Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Perfect Absorption Performance
3.2. Absorption Mechanism
3.3. Tunable Absorption with Geometric Parameters
3.4. Polarization-Independent and Wide-Angle
3.5. Influences of Different Materials on the Absorption Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, G.Q.; Liu, X.S.; Chen, J.; Li, Y.Y.; Shi, L.L.; Fu, G.L.; Liu, Z.Q. Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters. Sol. Energy Mater Sol. Cells 2019, 190, 20–29. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Y.S.; Wu, B.Y.; Sun, C.L.; Wu, X.H. Perfect metamaterial absorber for solar energy utilization. Int. J. Therm. Sci. 2022, 179, 107638. [Google Scholar] [CrossRef]
- Wu, L.J.; Li, Z.W.; Wang, W.J.; Chen, S.L.; Ruan, H. Near-ideal solar absorber with ultra-broadband from UV to MIR. Results Phys. 2022, 40, 105883. [Google Scholar] [CrossRef]
- Mayer, A.; Bi, H.; Griesse-Nascimento, S.; Hackens, B.; Loicq, J.; Mazur, E.; Deparis, O.; Lobet, M. Genetic-algorithm-aided ultra-broadband perfect absorbers using plasmonic metamaterials. Opt. Express 2022, 30, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhang, P.H.; Li, Q.; Zhang, Y.T.; Li, W.H. A perfect selective metamaterial absorber for high-temperature solar energy harvesting. Sol. Energy 2021, 230, 1165–1174. [Google Scholar] [CrossRef]
- Feng, H.; Li, X.M.; Wang, M.; Xia, F.; Zhang, K.; Kong, W.J.; Dong, L.F.; Yun, M.J. Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy. Opt. Express 2021, 29, 6000–6010. [Google Scholar] [CrossRef]
- Qi, B.; Zhao, Y.R.; Niu, T.M.; Mei, Z.L. Ultra-broadband metamaterial absorber based on all-metal nanostructures. J. Phys. D Appl. Phys. 2019, 52, 425304. [Google Scholar] [CrossRef]
- Li, W.W.; Xu, M.Z.; Xu, H.X.; Wang, X.W.; Huang, W. Metamaterial absorbers: From tunable surface to structural transformation. Adv. Mater. 2022, 34, 2202509. [Google Scholar] [CrossRef] [PubMed]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. A perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Azad, A.K.; Kort-Kamp, W.J.M.; Sykora, M.; Weisse-Bernstein, N.R.; Luk, T.S.; Taylor, A.J.; Dalvit, D.A.R.; Chen, H.T. Metasurface broadband solar absorber. Sci. Rep. 2016, 6, 20347. [Google Scholar] [CrossRef]
- Yu, P.Q.; Yang, H.; Chen, X.F.; Yi, Z.; Yao, W.T.; Chen, J.F.; Yi, Y.G.; Wu, P.H. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 2020, 158, 227–235. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, P.H.; Yang, H.; Yi, Z.; Luo, Y.; Liu, L.; Song, Q.J.; Pan, M.; Zhang, J.G.; Cai, P.G. High efficiency Titanium oxides and nitrides ultra-broadband solar energy absorber and thermal emitter from 200 nm to 2600 nm. Opt. Laser. Technol. 2022, 150, 108002. [Google Scholar] [CrossRef]
- Molesky, S.; Dewalt, C.J.; Jacob, Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express 2013, 21, A96–A110. [Google Scholar] [CrossRef] [PubMed]
- Woolf, D.N.; Kadlec, E.A.; Bethke, D.; Grine, A.D.; Nogan, J.J.; Cederberg, J.G.; Bruce Burckel, D.; Luk, T.S.; Shaner, E.A.; Hensley, J.M. High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter. Optica 2018, 5, 213–218. [Google Scholar] [CrossRef]
- Bai, J.J.; Pang, Z.Q.; Shen, P.Y.; Chen, T.T.; Shen, W.; Wang, S.S.; Chang, S.J. A terahertz photo-thermoelectric detector based on metamaterial absorber. Opt. Commun. 2021, 497, 127184. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Ren, X.D.; Song, X.X.; Chen, M.Y.; Tong, Y.Q.; Ye, Y.X.; Ren, Y.P.; Liu, X.Y.; Wang, S.B.; et al. Switchable terahertz absorber based on metamaterial structure with photosensitive semiconductor. Opt. Commun. 2021, 485, 126708. [Google Scholar] [CrossRef]
- Shuvo, M.M.K.; Hossain, M.I.; Mahmud, S.; Rahman, S.; Topu, M.T.H.; Hoque, A.; Islam, S.S.; Soliman, M.S.; Almalki, S.H.A.; Islam, M.S.; et al. Polarization and angular insensitive bendable metamaterial absorber for UV to NIR range. Sci. Rep. 2022, 12, 4857. [Google Scholar] [CrossRef]
- Lei, L.; Li, S.; Huang, H.X.; Tao, K.Y.; Xu, P. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 2018, 26, 5686–5693. [Google Scholar] [CrossRef]
- Guo, K.L.; Chen, H.H.; Huang, X.M.; Hu, T.H.; Liu, H.Y. Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film. Chin. Phys. B 2021, 30, 114201. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Liu, G.Q.; Liu, X.S.; Wang, Y.; Fu, G.I. Titanium resonators based ultra-broadband perfect light absorber. Opt. Mater. 2018, 83, 118–123. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Y.S.; Wu, B.Y.; Sun, C.L.; Wu, X.H. Broadband and wide-angle solar absorber for the visible and near-infrared frequencies. Sol. Energy 2022, 238, 78–83. [Google Scholar] [CrossRef]
- Wu, J.; Huang, D.C.; Wu, B.Y.; Wu, X.H. Extremely broadband light absorption by bismuth-based metamaterials involving hybrid resonances. Phys. Chem. Chem. Phys. 2022, 24, 21612–21616. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.M.; Li, Z.Y. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photon. Res. 2016, 4, 2327–9125. [Google Scholar] [CrossRef]
- Hakim, M.L.; Alam, T.; Islam, M.S.; Salaheldeen, M.M.; Almalki, S.H.A.; Baharuddin, M.H.; Alsaif, H.; Islam, M.T. Wide-oblique-incident-angle stable polarization-insensitive ultra-wideband metamaterial perfect absorber for visible optical wavelength applications. Materials 2022, 15, 2201. [Google Scholar] [CrossRef]
- Wang, Y.; Xuan, X.F.; Zhu, L.; Yu, H.J.; Gao, Q.; Ge, X.L. Numerical study of an ultra-broadband, wide-angle, polarization-insensitive absorber in visible and infrared region. Opt. Mater. 2021, 114, 110902. [Google Scholar] [CrossRef]
- Qin, F.; Chen, X.F.; Yi, Z.; Yao, W.T.; Yang, H.; Tang, Y.J.; Yi, Y.; Li, H.L.; Yi, Y.G. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol. Energy Mater Sol. Cells 2020, 211, 110535. [Google Scholar] [CrossRef]
- Hoa, N.T.Q.; Lam, P.H.; Tung, P.D.; Tuan, T.S.; Nguyen, H. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region. IEEE Photonics J. 2019, 11, 4600208. [Google Scholar] [CrossRef]
- Mou, N.I.; Liu, X.I.; Wei, T.; Dong, H.X.; He, Q.; Zhou, L.; Zhang, Y.Q.; Zhang, L.; Sun, S.L. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale 2020, 12, 5374. [Google Scholar] [CrossRef]
- Chena, M.J.; He, Y.R. Plasmonic nanostructures for broadband solar absorption based on the intrinsic absorption of metals. Sol. Energy Mater Sol. Cells 2018, 188, 156–163. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiong, M.; Chen, M.; Deng, S.J.; Liu, H.Q.; Teng, C.X.; Yang, H.Y.; Deng, H.C.; Yuan, L.B. Numerical study of ultra-broadband metamaterial perfect absorber based on four-corner star array. Nanomaterials 2021, 11, 2172. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 1974, 9, 5056–5070. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic: New York, NY, USA, 1998. [Google Scholar]
- Smith, D.R.; Dalichaouch, R.; Kroll, N. Photonic band structure and defects in one and two dimensions. J. Opt. Soc. Am. B 1993, 10, 314–321. [Google Scholar] [CrossRef]
- Ding, F.; Dai, J.; Chen, Y.T. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep. 2016, 6, 39445. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Z.Q.; Liu, X.S.; Fu, G.L.; Liu, G.Q.; Chen, J.; Wang, C.; Zhang, H.; Hong, M.H. Metamaterial and nanomaterial electromagnetic wave absorbers: Structures, properties and applications. J. Mater. Chem. C 2020, 8, 12768. [Google Scholar] [CrossRef]
- Huo, D.W.; Zhang, J.W.; Wang, Y.C.; Wang, C.; Su, H.; Zhao, H. Broadband perfect absorber based on TiN-nanocone metasurface. Nanomaterials 2018, 8, 485. [Google Scholar] [CrossRef]
- Dang, P.T.; Vu, T.V.; Kim, J.Y.; Park, J.; Nguyen, V.C.; Vo, D.D.; Nguyen, T.K.; Le, Q.K.; Lee, J.H. Efficient broadband truncated-pyramid-based metamaterial absorber in the visible and near-infrared regions. Crystals 2020, 10, 784. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.; Zhang, K.; Qian, M.; Liu, Y.; Wu, X.; Yu, K. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy. Nanomaterials 2023, 13, 91. https://doi.org/10.3390/nano13010091
Song D, Zhang K, Qian M, Liu Y, Wu X, Yu K. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy. Nanomaterials. 2023; 13(1):91. https://doi.org/10.3390/nano13010091
Chicago/Turabian StyleSong, Didi, Kaihua Zhang, Mengdan Qian, Yufang Liu, Xiaohu Wu, and Kun Yu. 2023. "Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy" Nanomaterials 13, no. 1: 91. https://doi.org/10.3390/nano13010091
APA StyleSong, D., Zhang, K., Qian, M., Liu, Y., Wu, X., & Yu, K. (2023). Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy. Nanomaterials, 13(1), 91. https://doi.org/10.3390/nano13010091