Recent Advances in Light-Conversion Phosphors for Plant Growth and Strategies for the Modulation of Photoluminescence Properties
Abstract
:1. Introduction
2. Influence of Light on Plant Growth
3. Fundamental Theory of Phosphors Luminescence
4. Brief Description of Techniques for Improving Plant Growth
4.1. Indoor Plant-Growth LED
4.2. Light-Conversion Films
5. Development of Phosphors for Plant Growth
5.1. Red Phosphor
5.1.1. Eu3+-Doped Phosphor
5.1.2. Eu2+-Doped Phosphor
5.1.3. Mn4+-Doped Phosphor
5.2. Far-Red Phosphor
5.3. Blue Phosphor
5.4. Red and Blue Composite Phosphors
5.4.1. Single-Ion-Doped Red and Blue Composite Phosphors
5.4.2. Double-Ion Co-Doped Red and Blue Composite Phosphors
6. Luminescence Regulation Strategy of Phosphors
6.1. Adjustment of the Spectral Position
6.1.1. Strategy for Group Substitution
6.1.2. Strategy for Activating Ion Concentration and Phosphors Concentration Regulation
6.1.3. Crystal Phase Engineering
6.2. Adjustment of the Spectral Width
6.3. Adjustments of Other Performance
7. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, S.; Xia, M.; Zhou, C.; Kong, Z.; Molokeev, M.S.; Liu, L.; Wong, W.-Y.; Zhou, Z. Red shift properties, crystal field theory and nephelauxetic effect on Mn4+-doped SrMgAl10-yGayO17 red phosphor for plant growth LED light. Chem. Eng. J. 2020, 396, 125208. [Google Scholar] [CrossRef]
- Ma, N.; Li, W.; Devakumar, B.; Zhang, Z.; Huang, X. Finding an efficient far-red-emitting CaMg2La2W2O12:Mn4+ phosphor toward indoor plant cultivation LED lighting. Mater. Today Chem. 2021, 21, 100512. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, N.; Guo, C.; Pan, F.; Zhou, X.; Suo, H.; Zhao, X.; Goldys, E.M. Site-Dependent Luminescence and Thermal Stability of Eu2+ Doped Fluorophosphate toward White LEDs for Plant Growth. ACS Appl. Mater. Interfaces 2016, 8, 20856–20864. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zheng, X.; He, Y.; Han, Y.; Zhang, J.; Qiu, Z.; Zhou, W.; Yu, L.; Lian, S. Precisely control the ultraviolet to blue light conversion for plant growth: Rigid crystal structure, lattice substitution and flux effect in the Ca1.1Sr0.9SiO4:Ce3+, Li+ phosphor. Mater. Res. Bull. 2022, 150, 111760. [Google Scholar] [CrossRef]
- Miao, S.; Shi, R.; Zhang, Y.; Chen, D.; Liang, Y. Deep-Red Ca3Al2Ge3O12:Eu3+ Garnet Phosphor with Near-Unity Internal Quantum Efficiency and High Thermal Stability for Plant Growth Application. Adv. Mater. Technol. 2023, 2023, 2202103. [Google Scholar] [CrossRef]
- Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B. LEDs for photons, physiology and food. Nature 2018, 563, 493–500. [Google Scholar] [CrossRef]
- Zhou, Z.; Zheng, J.; Shi, R.; Zhang, N.; Chen, J.; Zhang, R.; Suo, H.; Goldys, E.M.; Guo, C. Ab Initio Site Occupancy and Far-Red Emission of Mn4+ in Cubic-Phase La(MgTi)1/2O3 for Plant Cultivation. ACS Appl. Mater. Interfaces 2017, 9, 6177–6185. [Google Scholar] [CrossRef]
- Pedmale, U.V.; Huang, S.C.; Zander, M.; Cole, B.J.; Hetzel, J.; Ljung, K.; Reis, P.A.B.; Sridevi, P.; Nito, K.; Nery, J.R.; et al. Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell 2016, 164, 233–245. [Google Scholar] [CrossRef]
- Chen, J.; Guo, C.; Yang, Z.; Li, T.; Zhao, J. Li2SrSiO4:Ce3+, Pr3+ Phosphor with Blue, Red, and Near-Infrared Emissions Used for Plant Growth LED. J. Am. Ceram. Soc. 2016, 99, 218–225. [Google Scholar] [CrossRef]
- Gupta, I.; Singh, S.; Bhagwan, S.; Singh, D. Rare earth (RE) doped phosphors and their emerging applications: A review. Ceram. Int. 2021, 47, 19282–19303. [Google Scholar] [CrossRef]
- You, L.; Tian, R.; Zhou, T.; Xie, R.-J. Broadband near-infrared phosphor BaMgAl10O17:Cr3+ realized by crystallographic site engineering. Chem. Eng. J. 2021, 417, 129224. [Google Scholar] [CrossRef]
- Huang, M.-H.; Zhu, Q.-Q.; Li, S.; Zhai, Y.; Zhang, H.; Wang, L.; Xie, R.-J. Thermally robust Al2O3–La3Si6N11:Ce3+ composite phosphor-in-glass (PiG) films for high-power and high-brightness laser-driven lighting. J. Mater. Chem. C 2023, 11, 488–496. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Song, Z.; Han, Y.; Qiu, Z.; Zhou, W.; Zhang, J.; Yu, L.; Lian, S. Novel Dual-Excitation and Dual-Emission Materials: Eu2+,Pb2+ Co-doped Core–Shell-Structured CaS@CaZnOS Phosphors and Their Application for Highly Efficient Photosynthesis of Plants. ACS Appl. Mater. Interfaces 2022, 14, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, W.; Lü, F.; Sui, Y.; Wang, J.; Xu, Z. Research of Fluorescent Properties of a New Type of Phosphor with Mn2+-Doped Ca2SiO4. Sensors 2021, 21, 2788. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Manam, J. Color tunable emission and temperature dependent photoluminescence properties of Eu3+ co-doped Gd2Zr2O7:Dy3+ phosphors. Opt. Mater. 2019, 96, 109373. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, H.; Gao, Z.; Yun, X.; Xing, G.; Zhou, C.; Li, G. Anti-Thermal-Quenching Bi3+ Luminescence in a Cyan-Emitting Ba2ZnGe2O7:Bi Phosphor Based on Zinc Vacancy. Laser Photonics Rev. 2021, 15, 2000048. [Google Scholar] [CrossRef]
- Liu, X.; Shi, Y.; Cheng, K.; Gong, X.; Huang, W.; Deng, C. Na0.2La0.2Sr1.6WO6:Mn4+: An efficient far-red-emitting phosphor via a cation-pair partial substitution. Opt. Mater. 2023, 136, 113478. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Q.; Cai, P.; Zhao, H.; Hu, Z.; Lu, L.; Zhu, Z.; Pu, X.; Wang, X.; Ai, Q.; et al. Mn4+ doped Mg2ScSbO6 deep-red-emitting double-perovskite phosphors for plant-cultivation. J. Lumin. 2023, 256, 119624. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Al-Ali, A.M.; Rihan, H.Z.; Alshahrani, T.; Alwahibi, M.S.; Almutairi, K.F.; Naidoo, Y.; Fuller, M.P. Effects of Artificial Light Spectra and Sucrose on the Leaf Pigments, Growth, and Rooting of Blackberry (Rubus fruticosus) Microshoots. Agronomy 2023, 13, 89. [Google Scholar] [CrossRef]
- Matysiak, B.; Ropelewska, E.; Wrzodak, A.; Kowalski, A.; Kaniszewski, S. Yield and Quality of Romaine Lettuce at Different Daily Light Integral in an Indoor Controlled Environment. Agronomy 2022, 12, 1026. [Google Scholar] [CrossRef]
- Wang, S.; Seto, T.; Liu, B.; Wang, Y.; Li, C.; Liu, Z.; Dong, H. Tremendous Acceleration of Plant Growth by Applying a New Sunlight Converter Sr4Al14−xGaxO25:Mn4+ Breaking Parity Forbidden Transition. Adv. Sci. 2023, 10, 2204418. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Jin, Y.; Yuan, L.; Wu, H.; Hu, Y. Mn4+-activated red pc-LED for precisely matching the spectral absorption and circadian rhythm of photoreceptor toward promoting crop growth. J. Alloys Compd. 2023, 938, 168493. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Jatothu, B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Al Murad, M.; Razi, K.; Jeong, B.R.; Samy, P.M.A.; Muneer, S. Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops. Sustainability 2021, 13, 1985. [Google Scholar] [CrossRef]
- Shao, B.; Huo, J.; You, H. Prevailing Strategies to Tune Emission Color of Lanthanide-Activated Phosphors for WLED Applications. Adv. Opt. Mater. 2019, 7, 1900319. [Google Scholar] [CrossRef]
- Parale, P.N.; Kadam, A.R.; Dabre, K.V.; Dhoble, S.J. Spectroscopic investigation of KBa2(PO3)5:Mn4+ activated glasses for plant cultivation applications. Mater. Lett. X 2023, 18, 100191. [Google Scholar] [CrossRef]
- Jin, C.; Li, R.; Liu, Y.; Zhou, C.; Sun, P.; Luo, Z.; Liu, Z.; Jiang, J. High-performance Gd3Al4GaO12:Cr3+ phosphors for next-generation far-red LEDs. Mater. Res. Bull. 2023, 163, 112234. [Google Scholar] [CrossRef]
- Meng, X.; Wang, Z.; Yan, Z.; Guo, D.; Liu, M.; Gong, J.; Feng, X.; Zhang, T.; Li, X.; Li, P. Flux induced highly efficient and stable phosphor Sr2ScSbO6:Mn4+ for plant growth lighting. J. Mater. Chem. C 2023, 11, 5064–5072. [Google Scholar] [CrossRef]
- Zou, W.; Nie, W.; Wu, D.; Wu, S.; Wang, W.; Peng, J.; Ye, X. Synthesis, luminescence properties and potential applications for plant growth: A novel Mn4+-activated SrLa2Al2O7 phosphor with far-red emission. J. Lumin. 2023, 257, 119759. [Google Scholar] [CrossRef]
- Khan, M.S.; Mehare, M.D.; Parauha, Y.R.; Dhale, S.A.; Dhoble, S.J. Synthesis and novel emission properties of Bi3+-doped Ca2BO3Cl phosphor for plant cultivation. Luminescence 2023, 38, 4–11. [Google Scholar] [CrossRef]
- Cheng, K.; Xu, Y.; Liu, X.; Long, J.; Huang, W.; Deng, C. A novel far-red phosphors Li2ZnTi3O8:Cr3+for indoor plant cultivation:Synthesis and luminescence properties. Ceram. Int. 2023, 49, 6343–6350. [Google Scholar] [CrossRef]
- Li, L.; Cao, Q.; Xie, J.; Wang, W.; Wang, J.; Pan, Y.; Wei, X.; Li, Y. Novel far-red emitting phosphor Mn4+-activated BaLaLiWO6 with excellent performance for indoor plant cultivation of light-emitting diodes. J. Alloys Compd. 2023, 934, 167927. [Google Scholar] [CrossRef]
- Singh, K.; Vaidyanathan, S. Stable and efficient narrow-band red emitters with high colour purity for white LEDs and plant growth applications. Dalton Trans. 2022, 51, 11255–11266. [Google Scholar] [CrossRef] [PubMed]
- Bargat, S.R.; Parauha, Y.R.; Shirbhate, N.S.; Mishra, G.; Dhoble, S.J. Novel red colour emitting Ca0.995Mg2(SO4)3:0.5Eu2+ phosphor under ultraviolet, blue, and green excitation for plant growth LEDs. Luminescence 2022, 37, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Li, Q.; Zhou, C.; Chen, K.; Luo, Z.; Zhang, S.; Molokeev, M.S.; Wang, J.; Zhou, Z.; Xia, M. High-Efficiency Continuous-Luminescence-Controllable Performance and Antithermal Quenching in Bi3+-Activated Phosphors. Inorg. Chem. 2022, 61, 13104–13114. [Google Scholar] [CrossRef]
- Xiang, J.; Zhao, X.; Suo, H.; Jin, M.; Zhou, X.; Chen, C.; Guo, C. Very stable and high-quantum-yield phosphor Na2BaSr(PO4)2:Eu2+ for plant growth LEDs. Mater. Chem. Front. 2021, 5, 6192–6199. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.; Lu, Y.; Wang, D.; Wang, C.; Li, J. One-Step Synthesis of Eu3+-Modified Cellulose Acetate Film and Light Conversion Mechanism. Polymers 2021, 13, 113. [Google Scholar] [CrossRef]
- Liu, Y.; Gui, Z.; Liu, J. Research Progress of Light Wavelength Conversion Materials and Their Applications in Functional Agricultural Films. Polymers 2022, 14, 851. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.G.; Mickens, M.A.; Aronne, G.; Gómez, C. Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce. Physiol. Plant. 2021, 172, 2191–2202. [Google Scholar] [CrossRef]
- Karimi, M.; Ahmadi, N.; Ebrahimi, M. Red LED light promotes biomass, flowering and secondary metabolites accumulation in hydroponically grown Hypericum perforatum L. (cv. Topas). Ind. Crop. Prod. 2022, 175, 114239. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
- Dickens, B.; Schroeder, L.W.; Brown, W.E. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. J. Solid State Chem. 1974, 10, 232–248. [Google Scholar] [CrossRef]
- Wang, S.; Han, Y.; Shi, L.; Tong, Y.; Zhao, Q.; Zhang, J.; Mao, Z.; Mu, Z.; Zhang, Z.; Niu, S. A new strategy to the phosphors for plant growth LEDs: Far red emission from the Ca9MY0.667 (PO4)7 (M = Li, Na):Eu3+ phosphors due to the Eu3+: 5D0 → 7F4 transition. J. Lumin. 2020, 225, 117404. [Google Scholar] [CrossRef]
- Singh, K.; Rajendran, M.; Devi, R.; Vaidyanathan, S. Narrow-band red-emitting phosphor with negligible concentration quenching for hybrid white LEDs and plant growth applications. Dalton Trans. 2021, 50, 4986–5000. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, Y.; Yamamuro, M.; Wada, Y.; Kanehisa, N.; Kai, Y.; Yanagida, S. Luminescent Polymer Containing the Eu(III) Complex Having Fast Radiation Rate and High Emission Quantum Efficiency. J. Phys. Chem. A 2003, 107, 1697–1702. [Google Scholar] [CrossRef]
- Shoji, S.; Saito, H.; Jitsuyama, Y.; Tomita, K.; Haoyang, Q.; Sakurai, Y.; Okazaki, Y.; Aikawa, K.; Konishi, Y.; Sasaki, K.; et al. Plant growth acceleration using a transparent Eu3+-painted UV-to-red conversion film. Sci. Rep. 2022, 12, 17155. [Google Scholar] [CrossRef]
- George, N.C.; Denault, K.A.; Seshadri, R. Phosphors for Solid-State White Lighting. Annu. Rev. Mater. Res. 2013, 43, 481–501. [Google Scholar] [CrossRef]
- Qin, X.; Liu, X.; Huang, W.; Bettinelli, M.; Liu, X. Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. Chem. Rev. 2017, 117, 4488–4527. [Google Scholar] [CrossRef]
- Hu, T.; Jiang, Z.; Wang, B.; Yu, T.; Wen, D.; Zeng, Q.; Gao, Y. Eu2+ luminescence in CaYGaO4 olivine: A new efficient red phosphor for warm illumination. J. Mater. Chem. C 2023, 11, 2153–2161. [Google Scholar] [CrossRef]
- Leaño, J.L., Jr.; Mariano, C.O.M.; Huang, W.-T.; Mahlik, S.; Lesniewski, T.; Grinberg, M.; Sheu, H.-S.; Hu, S.-F.; Liu, R.-S. Thermally Stable and Deep Red Luminescence of Sr1−xBax[Mg2Al2N4]:Eu2+ (x = 0–1) Phosphors for Solid State and Agricultural Lighting Applications. ACS Appl. Mater. Interfaces 2020, 12, 23165–23171. [Google Scholar] [CrossRef]
- Lai, S.; Zhao, M.; Qiao, J.; Molokeev, M.S.; Xia, Z. Data-Driven Photoluminescence Tuning in Eu2+-Doped Phosphors. J. Phys. Chem. Lett. 2020, 11, 5680–5685. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, Y.; Zhang, X.; Chen, J.; Huang, H.; Wang, D.; Chai, X.; Xie, G.; Molokeev, M.S.; Zhang, H.; et al. Facile synthesis of the desired red phosphor Li2Ca2Mg2Si2N6:Eu2+ for high CRI white LEDs and plant growth LED device. J. Am. Ceram. Soc. 2020, 103, 1773–1781. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Z.; Dong, R.; Xie, G.; Zhou, J.; Wu, K.; Zhang, H.; Cai, Q.; Lei, B. Characterization and properties of a Sr2Si5N8:Eu2+-based light-conversion agricultural film. J. Rare Earths 2020, 38, 539–545. [Google Scholar] [CrossRef]
- Adachi, S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: A review. J. Lumin. 2018, 202, 263–281. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, N.; Xia, M.; Yokoyama, M.; Hintzen, H.T. (Bert) Research progress and application prospects of transition metal Mn4+-activated luminescent materials. J. Mater. Chem. C 2016, 4, 9143–9161. [Google Scholar] [CrossRef]
- Li, Y.; Qi, S.; Li, P.; Wang, Z. Research progress of Mn doped phosphors. RSC Adv. 2017, 7, 38318–38334. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, H.; Zhang, D.; Shen, Y.; Li, Y.; Hong, R.; Tao, C.; Han, Z.; Chen, L.; Zhou, S. Deep-red emitting Mg2TiO4:Mn4+ phosphor ceramics for plant lighting. J. Adv. Ceram. 2021, 10, 88–97. [Google Scholar] [CrossRef]
- Tan, T.; Li, S.; Fan, Y.; Wang, Z.; Ali Raza, M.; Shafiq, I.; Wang, B.; Wu, X.; Yong, T.; Wang, X.; et al. Far-red light: A regulator of plant morphology and photosynthetic capacity. Crop J. 2022, 10, 300–309. [Google Scholar] [CrossRef]
- Park, Y.; Runkle, E.S. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environ. Exp. Bot. 2017, 136, 41–49. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Kalaitzoglou, P.; van Ieperen, W.; Harbinson, J.; van der Meer, M.; Martinakos, S.; Weerheim, K.; Nicole, C.C.S.; Marcelis, L.F.M. Effects of Continuous or End-of-Day Far-Red Light on Tomato Plant Growth, Morphology, Light Absorption, and Fruit Production. Front. Plant Sci. 2019, 10, 322. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Zhou, Y.; He, Y.; Liang, Y.; Luo, P.; Zhou, W.; Zhang, J.; Yu, L.; Qiu, Z.; Lian, S. Broadband UV-Excitation and Red/Far-Red Emission Materials for Plant Growth: Tunable Spectrum Conversion in Eu3+,Mn4+ Co-doped LaAl0.7Ga0.3O3 Phosphors. Inorg. Chem. 2023, 62, 3141–3152. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.; Wei, Y.; Liu, D.; Li, G.; Lin, J. Recent Advances in Chromium-Doped Near-Infrared Luminescent Materials: Fundamentals, Optimization Strategies, and Applications. Adv. Opt. Mater. 2023, 11, 2201739. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wei, G.; Yang, Y.; He, S.; Li, J.; Shi, Y.; Li, R.; Zhang, J.; Li, P. Highly Efficient and Stable Near-Infrared Broadband Garnet Phosphor for Multifunctional Phosphor-Converted Light-Emitting Diodes. Adv. Opt. Mater. 2022, 10, 2200415. [Google Scholar] [CrossRef]
- Huyen, N.T.; Tu, N.; Tung, D.T.; Trung, D.Q.; Anh, D.D.; Duc, T.T.; Nga, T.T.T.; Huy, P.T. Photoluminescent properties of red-emitting phosphor BaMgAl10O17:Cr3+for plant growth LEDs. Opt. Mater. 2020, 108, 110207. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Liu, G.; Xia, Z. Dopant and Compositional Modulation Triggered Broadband and Tunable Near-Infrared Emission in Cs2Ag1−xNaxInCl6:Cr3+Nanocrystals. Chem. Mater. 2022, 34, 3006–3012. [Google Scholar] [CrossRef]
- Kong, L.; Wen, Y.; Jiao, X.; Liu, X.; Xu, Z. Interactive regulation of light quality and temperature on cherry tomato growth and photosynthesis. Environ. Exp. Bot. 2021, 182, 104326. [Google Scholar] [CrossRef]
- Li, C.-X.; Xu, Z.-G.; Dong, R.-Q.; Chang, S.-X.; Wang, L.-Z.; Khalil-Ur-Rehman, M.; Tao, J.-M. An RNA-Seq Analysis of Grape Plantlets Grown in vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light. Front. Plant Sci. 2017, 8, 78. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Q.; Xia, Z. Structural Engineering of Eu2+-Doped Silicates Phosphors for LED Applications. Acc. Mater. Res. 2020, 1, 137–145. [Google Scholar] [CrossRef]
- Xia, Z.; Meijerink, A. Ce3+-Doped garnet phosphors: Composition modification, luminescence properties and applications. Chem. Soc. Rev. 2017, 46, 275–299. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Z.; Wu, Q.; Li, Y.; Wang, Y. Synthesis, structure and photoluminescence properties of Ca2LuHf2(AlO4)3:Ce3+, a novel garnet-based cyan light-emitting phosphor. J. Mater. Chem. C 2016, 4, 11396–11403. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, Y.; Han, Y.; Qiu, Z.; Zhou, W.; Zhang, J.; Li, C.; Yu, L.; Lian, S. Fine controllable blue emission and its mechanism in Ce3+-doped orthosilicate solid solution phosphors for different plant growths. J. Rare Earths 2018, 36, 1150–1156. [Google Scholar] [CrossRef]
- Barceló-Muñoz, A.; Barceló-Muñoz, M.; Gago-Calderon, A. Effect of LED Lighting on Physical Environment and Microenvironment on In Vitro Plant Growth and Morphogenesis: The Need to Standardize Lighting Conditions and Their Description. Plants 2022, 11, 60. [Google Scholar] [CrossRef]
- Appolloni, E.; Paucek, I.; Pennisi, G.; Stringari, G.; Gabarrell Durany, X.; Orsini, F.; Gianquinto, G. Supplemental LED Lighting Improves Fruit Growth and Yield of Tomato Grown under the Sub-Optimal Lighting Condition of a Building Integrated Rooftop Greenhouse (i-RTG). Horticulturae 2022, 8, 771. [Google Scholar] [CrossRef]
- Seif, M.; Aliniaeifard, S.; Arab, M.; Mehrjerdi, M.Z.; Shomali, A.; Fanourakis, D.; Li, T.; Woltering, E. Monochromatic red light during plant growth decreases the size and improves the functionality of stomata in chrysanthemum. Funct. Plant Biol. 2021, 48, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Liao, Q.; Li, Q.; Yang, Q.; Wang, F.; Li, J. Effects of LED Red and Blue Light Component on Growth and Photosynthetic Characteristics of Coriander in Plant Factory. Horticulturae 2022, 8, 1165. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, Q.; Qu, M.; Gao, L.; Hou, L. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants. Sci. Hortic. 2019, 257, 108680. [Google Scholar] [CrossRef]
- Lu, J.; Su, C.-C.; Hong, C.-S.; Peng, G.; Yang, C.-F. Investigations of Photoluminescence Properties of CaxMg2-xSi2O6:yEu2+ (x = 0.5–1.25, y = 0.015–0.035) Phosphors. Materials 2023, 16, 2032. [Google Scholar] [CrossRef]
- Guo, C.; Suo, H. Design of Single-Phased Multicolor-Emission Phosphor for LED. In Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications: Volume 1; Liu, R.-S., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 459–508. ISBN 978-3-662-52771-9. [Google Scholar]
- Xia, M.; Wu, X.; Zhong, Y.; Zhou, Z.; Wong, W.-Y. A novel Na3La(PO4)2/LaPO4:Eu blue-red dual-emitting phosphor with high thermal stability for plant growth lighting. J. Mater. Chem. C 2019, 7, 2385–2393. [Google Scholar] [CrossRef]
- Zhang, G.; Yin, Y.; Wang, Y.; Yu, S.; Zhang, J.; Wu, J.; Wang, T.; Zhao, L.; Li, Y.; Wang, W. Tunable blue-red dual emission via energy transfer in Na4CaSi3O9: Ce3+, Mn2+ phosphors for plant growth LED. J. Lumin. 2021, 235, 118029. [Google Scholar] [CrossRef]
- Gong, W.; Luo, J.; Zhou, W.; Fan, J.; Sun, Z.; Zeng, S.; Pan, H.; Zhu, Z.; Yang, X.; Yu, Z.; et al. Thermal-stable blue-red dual-emitting Na2Mg2Si6O15: Eu2+, Mn2+ phosphor for plant growth lighting. J. Lumin. 2021, 239, 118372. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, S.; Seto, T.; Wang, Y. A Highly Efficient Eu2+ Excited Phosphor with Luminescence Tunable in Visible Range and Its Applications for Plant Growth. Adv. Opt. Mater. 2021, 9, 2101173. [Google Scholar] [CrossRef]
- Gong, D.; Zhu, D.; Huang, Z.; Wang, C.; Liao, M.; Wu, F.; Mu, Z. Towards high performance cyan phosphor by replacing F− with Cl− in Ba3Ca2(PO4)3(F/Cl): Eu2+. Opt. Mater. 2022, 134, 113123. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Hao, Z.; Wang, X.; Zhang, J. Generation of broadband emission by incorporating N3− into Ca3Sc2Si3O12: Ce3+ garnet for high rendering white LEDs. J. Mater. Chem. 2011, 21, 6354–6358. [Google Scholar] [CrossRef]
- Lang, T.; Cai, M.; Fang, S.; Han, T.; He, S.; Wang, Q.; Ge, G.; Wang, J.; Guo, C.; Peng, L.; et al. Trade-off Lattice Site Occupancy Engineering Strategy for Near-Infrared Phosphors with Ultrabroad and Tunable Emission. Adv. Opt. Mater. 2022, 10, 2101633. [Google Scholar] [CrossRef]
- Huang, S.; Shang, M.; Deng, M.; Yan, Y.; Dang, P.; Lin, J. Tunable concentration/excitation-dependent deep-red and white light emission in single-phase Eu2+-activated Sc-based oxide phosphors for blue/UV-LEDs. J. Mater. Chem. C 2022, 10, 14971–14981. [Google Scholar] [CrossRef]
- Li, J.; Li, P.; Wang, Y.; Shi, Y.; He, S.; Yang, Y.; Li, R.; Wei, G.; Suo, H.; Wang, Z. Two-stage ultra-broadband luminescence of Cr3+-doped multisite layered phosphor Sr3Ga2Ge4O14 and its application in pc-LEDs. Mater. Today Chem. 2022, 26, 101102. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Liu, S.; Mei, T.; Fan, Y.; Kang, L.; Xin, F.; Xing, M.; Fu, Y.; Luo, X.; et al. Color-tunable photoluminescence and persistent luminescence in a single LiYGeO4:Tb3+ phosphor. Mater. Res. Express 2022, 9, 076201. [Google Scholar] [CrossRef]
- Tan, T.; Wang, S.; Su, J.; Yuan, W.; Wu, H.; Pang, R.; Wang, J.; Li, C.; Zhang, H. Design of a Novel Near-Infrared Luminescence Material Li2Mg3TiO6:Cr3+with an Ultrawide Tuning Range Applied to Near-Infrared Light-Emitting Diodes. ACS Sustain. Chem. Eng. 2022, 10, 3839–3850. [Google Scholar] [CrossRef]
- He, Z.; Zhang, C.; Zhang, J.; Liu, S.; Sun, Y.; Chen, Q.; Chu, Z.; Ye, M.; Zhang, K. Concentration-dependent multi-color humic acid-based carbon dots for luminescent polymer composite films. J. Mater. Sci. 2022, 57, 1069–1083. [Google Scholar] [CrossRef]
- Armetta, F.; Sibeko, M.A.; Luyt, A.S.; Chillura Martino, D.F.; Spinella, A.; Saladino, M.L. Influence of the Ce:YAG Amount on Structure and Optical Properties of Ce:YAG-PMMA Composites for White LED. Z. Phys. Chem. 2016, 230, 1219–1231. [Google Scholar] [CrossRef]
- Liu, H.-G.; Xiao, F.; Zhang, W.-S.; Chung, Y.; Seo, H.-J.; Jang, K.; Lee, Y.-I. Influences of matrices and concentrations on luminescent characteristics of Eu(TTA)3(H2O)2/polymer composites. J. Lumin. 2005, 114, 187–196. [Google Scholar] [CrossRef]
- Zhao, S.; Liao, S.; Shi, R.; Zhang, J.; Han, Y.; Lian, S. Tuning emission color of Eu2+-activated phosphor through phase segregation. Chem. Eng. J. 2023, 452, 139640. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Pang, R.; Tan, T.; Tan, T.; Wen, H.; Zhang, S.; You, H.; Li, C.; Zhang, H. Two-site occupation in Cr3+-activated BaIn2(P2O7)2 phosphor for broadband near-infrared thermometry and LED applications. Mater. Res. Bull. 2023, 163, 112222. [Google Scholar] [CrossRef]
- Ma, H.; Guan, L.; Yin, T.; Wu, Y.; Liu, Z.; Wang, D.; Wang, F.; Fu, N.; Li, X. Broadband emission phosphor Sr3Al2O5Cl2:Bi3+: Luminescence modulation and application for a white-light-emitting diode. Ceram. Int. 2022, 48, 33143–33150. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Mei, L.; Wang, Z.; Fang, M.; Huang, Z. Emission red shift and energy transfer behavior of color-tunable KMg4(PO4)3:Eu2+,Mn2+ phosphors. J. Mater. Chem. C 2015, 3, 5516–5523. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, H.; Li, W.; Zheng, M.; Molokeev, M.S.; Xia, Z.; Zheng, Y.; Li, Q.; Liu, Y.; Zhang, X.; et al. Ultra-Wide Vis–NIR Mg2Al4Si5O18:Eu2+,Cr3+Phosphor Containing Unusual NIR Luminescence Induced by Cr3+Occupying Tetrahedral Coordination for Hyperspectral Imaging. Adv. Opt. Mater. 2022, 10, 2200882. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, T.; Liu, R.; Tang, X.; Xie, R.-J. Ultrawide near-infrared SrHfO3:Cr3+phosphor with dual emission bands. J. Am. Ceram. Soc. 2023, 106, 3446–3454. [Google Scholar] [CrossRef]
- Wang, J.; Han, X.; Zhou, Y.; Wu, Z.; Liu, D.; Zeng, C.; Cao, S.; Zou, B. Ion Substitution Strategy toward High-Efficiency Near-Infrared Photoluminescence of Cs2KIn1−yAlyF6:Cr3+Solid Solutions. J. Phys. Chem. Lett. 2023, 14, 1371–1378. [Google Scholar] [CrossRef]
- Yan, Y.; Luo, C.; Ling, S.; Liang, J.; Liao, S.; Huang, Y. Enhancing quantum efficiency and thermal stability in Gd2SrAl2O7: Mn4+, Bi3+, Na+ far-red emitting phosphor by energy transfer and cation substitution strategy for indoor plant growth LED lighting. J. Alloys Compd. 2023, 947, 169609. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Jiang, Y.; Xu, S.; Guo, H. Bi3+ ions doped double perovskite Ca2MgWO6 phosphor for yellow light emission. J. Lumin. 2023, 258, 119782. [Google Scholar] [CrossRef]
- Park, K.; Kim, H.; Gwon, S.Y.; Jung, G.W.; Kim, S.W. Photoluminescence improvement of Lu3Al5O12:Ce3+ phosphors by controlling synthesizing temperature and adding fluoride fluxes. Ceram. Int. 2022, 48, 33848–33860. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, L.; Zhang, L.; Xu, Y.; Wu, X.; Yin, S.; Zhong, C.; You, H. High thermal stability phosphors with a rigid structure similar to the benzene ring and application in plant growth. J. Mater. Chem. C 2022, 10, 16857–16864. [Google Scholar] [CrossRef]
- Bai, Y.; Jia, Z.; Gao, J.; Wu, L.; Kong, Y.; Zhang, Y.; Xu, J. A novel red-emitting phosphor K2MgGeO4:Eu3+ for WLEDs: Zero-thermal quenching induced by heterovalent substitution. J. Mater. Chem. C 2022, 10, 15957–15966. [Google Scholar] [CrossRef]
Phosphor | λex/nm | λem/nm | Emission Color | Refs. |
---|---|---|---|---|
Ca3Al2Ge3O12: Eu3+ | 393 | 707 | Red | [5] |
KBa2(PO3)5: Mn4+ | 438 | 660 | Red | [26] |
Gd3Al4GaO12: Cr3+ | 360 | 734 | Red | [27] |
Sr2ScSbO6: Mn4+ | 310 | 700 | Red | [28] |
SrLa2Al2O7: Mn4+ | 365 | 731 | Red | [29] |
Ca2BO3Cl: Bi3+ | 486 | 732 | Red | [30] |
Li2ZnTi3O8: Cr3+ | 360/468 | 735 | Red | [31] |
BaLaLiWO6: Mn4+ | 332 | 708 | Red | [32] |
Li3BaSrY3(WO4)8: Eu3+ | 394 | 615 | Red | [33] |
Ca0.995Mg2(SO4)3: Eu2+ | 554 | 635 | Red | [34] |
Ca1.1Sr0.9SiO4: Ce3+ | 365 | 425 | Blue | [4] |
La3SbO7: Bi3+ | 315 | 520 | Blue | [35] |
Na2BaSr(PO4)2: Eu2+ | 325 | 428 | Blue | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Liu, W.; You, Q.; Zhao, X.; Liu, S.; Xue, L.; Sun, J.; Jiang, X. Recent Advances in Light-Conversion Phosphors for Plant Growth and Strategies for the Modulation of Photoluminescence Properties. Nanomaterials 2023, 13, 1715. https://doi.org/10.3390/nano13111715
Yang C, Liu W, You Q, Zhao X, Liu S, Xue L, Sun J, Jiang X. Recent Advances in Light-Conversion Phosphors for Plant Growth and Strategies for the Modulation of Photoluminescence Properties. Nanomaterials. 2023; 13(11):1715. https://doi.org/10.3390/nano13111715
Chicago/Turabian StyleYang, Chengxiang, Wei Liu, Qi You, Xiuxian Zhao, Shanshan Liu, Liang Xue, Junhua Sun, and Xuchuan Jiang. 2023. "Recent Advances in Light-Conversion Phosphors for Plant Growth and Strategies for the Modulation of Photoluminescence Properties" Nanomaterials 13, no. 11: 1715. https://doi.org/10.3390/nano13111715
APA StyleYang, C., Liu, W., You, Q., Zhao, X., Liu, S., Xue, L., Sun, J., & Jiang, X. (2023). Recent Advances in Light-Conversion Phosphors for Plant Growth and Strategies for the Modulation of Photoluminescence Properties. Nanomaterials, 13(11), 1715. https://doi.org/10.3390/nano13111715