Co- and Ni-Doped TiO2 Nanoparticles Supported on Zeolite Y with Photocatalytic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Photocatalysts Preparation
2.3. Photocatalysts Characterization
2.4. Photocatalytic Properties
3. Results
3.1. Characterization of the Samples
3.1.1. X-ray Diffraction
3.1.2. N2-Sorption
3.1.3. Scanning Electron Microscopy (SEM)
3.1.4. UV–Vis Absorption Spectroscopy
3.1.5. H2-TPR Measurements
3.1.6. XPS Analysis
3.1.7. Raman Spectroscopy
3.2. Photocatalytic Activity
3.2.1. Photocatalytic Results
3.2.2. Mechanism Investigations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.; Wang, N.; Zhang, H.; Shang, R.; Xing, J.; Zhang, D.; Li, J. Fabrication of ZSM-5 zeolite supported TiO2-NiO heterojunction photocatalyst and research on its photocatalytic performance. J. Solid State Chem. 2022, 309, 122895. [Google Scholar] [CrossRef]
- Umejuru, E.C.; Mashifana, T.; Kandjou, V.; Amani-Beni, M.; Sadeghifar, H.; Fayazi, M.; Karimi-Maleh, H.; Sithole, N.T. Application of zeolite based nanocomposites for wastewater remediation: Evaluating newer and environmentally benign approaches. Environ. Res. 2023, 231, 116073. [Google Scholar] [CrossRef] [PubMed]
- Samaniego-Benítez, J.E.; García-García, A.; Rivera-Manrique, S.I.; Ramírez-Aparicio, J. Multiwalled carbon nanotubes/zeolite composite for dye degradation under sunlight. Mater. Today Commun. 2023, 35, 106046. [Google Scholar] [CrossRef]
- Hu, G.; Yang, J.; Duan, X.; Farnood, R.; Yang, C.; Yang, J.; Liu, W.; Liu, Q. Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications. Chem. Eng. J. 2021, 417, 129209. [Google Scholar] [CrossRef]
- Suraja, P.V.; Yaakob, Z.; Binitha, N.N.; Resmi, M.R.; Silija, P.P. Photocatalytic degradation of dye pollutant over Ti and Co doped SBA-15: Comparison of activities under visible light. Chem. Eng. J. 2011, 176–177, 265–271. [Google Scholar] [CrossRef]
- Huang, C.H.; Chang, K.P.; Ou, H.D.; Chiang, Y.C.; Chang, E.E.; Wang, C.F. Characterization and application of Ti-containing mesoporous silica for dye removal with synergistic effect of coupled adsorption and photocatalytic oxidation. J. Hazard. Mater. 2011, 186, 1174–1182. [Google Scholar] [CrossRef]
- Petcu, G.; Anghel, E.M.; Buixaderas, E.; Atkinson, I.; Somacescu, S.; Baran, A.; Culita, D.C.; Trica, B.; Bradu, C.; Ciobanu, M.; et al. Au/Ti Synergistically Modified Supports Based on SiO2 with Different Pore Geometries and Architectures. Catalysts 2022, 12, 1129. [Google Scholar] [CrossRef]
- Petcu, G.; Anghel, E.M.; Somacescu, S.; Preda, S.; Culita, D.C.; Mocanu, S.; Ciobanu, M.; Parvulescu, V. Hierarchical Zeolite Y Containing Ti and Fe Oxides as Photocatalysts for Degradation of Amoxicillin. J. Nanosci. Nanotechnol. 2020, 20, 1158–1169. [Google Scholar] [CrossRef]
- Diban, N.; Pacuła, A.; Kumakiri, I.; Barquín, C.; Rivero, M.J.; Urtiaga, A.; Ortiz, I. TiO2–Zeolite Metal Composites for Photocatalytic Degradation of Organic Pollutants in Water. Catalysts 2021, 11, 1367. [Google Scholar] [CrossRef]
- Joseph, C.G.; Sharain-Liew, Y.L.; Bono, A.; Teng, L.Y. Photodegradation of Indigo Dye Using TiO2 and TiO2/Zeolite System. Asian J. Chem. 2013, 25, 8402–8406. [Google Scholar] [CrossRef]
- Chatti, R.; Rayalu, S.S.; Dubey, N.; Labhsetwar, N.; Devotta, S. Solar-based photoreduction of methyl orange using zeolite supported photocatalytic materials. Sol. Energy Mater. Sol. Cells 2007, 91, 180–190. [Google Scholar] [CrossRef]
- Das, A.; Mrinal, K.; Adak, M.K.; Mahata, N.; Biswas, B. Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect. J. Mol. Liq. 2021, 338, 116479. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Paul Chen, P.; Wang, Y.; Kun Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Sescu, A.M.; Favier, L.; Lutic, D.; Soto-Donoso, N.; Ciobanu, G.; Harja, M. TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions. Water 2021, 13, 19. [Google Scholar] [CrossRef]
- Goncearenco, E.; Morjan, I.P.; Dutu, E.; Scarisoreanu, M.; Fleaca, C.; Gavrila-Florescu, L.; Dumitrache, F.; Banici, A.M.; Teodorescu, V.S.; Anastasescu, C.; et al. The effect of noble metal addition on the properties of oxide semiconductors nanoparticles. J. Solid State Chem. 2022, 307, 122817. [Google Scholar] [CrossRef]
- Krishnan, A.; Swarnalal, A.; Das, D.; Krishnan, M.; Saji, V.S.; Shibli, S.M.A. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. J. Environ. Sci. 2023, 139, 389–417. [Google Scholar] [CrossRef]
- Amorós-Pérez, A.; Cano-Casanova, L.; Castillo-Deltell, A.; Lillo-Ródenas, M.A.; Román-Martínez, M.C. TiO2 Modification with Transition Metallic Species (Cr, Co, Ni, and Cu) for Photocatalytic Abatement of Acetic Acid in Liquid Phase and Propene in Gas Phase. Materials 2019, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Suligoj, A.; Arcon, I.; Mazaj, M.; Drazic, G.; Arcon, D.; Cool, P.; Stangar, U.L.; Tusar, N.N. Surface modified titanium dioxide using transition metals: Nickel as a winning transition metal for solar light photocatalysis. J. Mater. Chem. A 2018, 6, 9882. [Google Scholar] [CrossRef] [Green Version]
- Filip, M.; Petcu, G.; Anghel, E.M.; Petrescu, S.; Trica, B.; Osiceanu, P.; Stanica, N.; Atkinson, I.; Munteanu, C.; Mureseanu, M.; et al. FeTi-SBA-15 magnetic nanocomposites with photocatalytic properties. Catal. Today 2021, 366, 10–19. [Google Scholar] [CrossRef]
- Jo, W.-K.; Kumar, S.; Isaacs, A.A.; Lee, A.F.; Karthikeyan, S. Cobalt promoted TiO2/GO for the photocatalytic degradation ofoxytetracycline and Congo Red. Appl. Catal. B Environ. 2017, 201, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, M.; Hara, M.; Kawada, H.; Taday, H.; Ito, S. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light. J. Colloid Interface Sci. 2000, 224, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Akel, S.; Boughaled, R.; Dillert, R.; El Azzouzi, M.; Bahnemann, D.W. UV/Vis Light Induced Degradation of Oxytetracycline Hydrochloride Mediated by Co-TiO2 Nanoparticles. Molecules 2020, 25, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Liu, S.; He, Y.; Wang, J. Adsorption and degradation of the cationic dyes over Co doped amorphous mesoporous titania–silica catalyst under UV and visible light irradiation. Microporous Mesoporous Mater. 2008, 115, 416–425. [Google Scholar] [CrossRef]
- Najafabadi, A.T.; Taghipour, F. Cobalt precursor role in the photocatalytic activity of the zeolite-supported TiO2-based photocatalysts under visible light: A promising tool toward zeolite-based core–shell photocatalysis. J. Photochem. Photobiol. A Chem. 2012, 248, 1–7. [Google Scholar] [CrossRef]
- Song, Z.; Liu, J.; Hu, Y.; Li, S.; Zhang, X.; Ma, L.; Chen, L.; Zhang, Q. Solvent-controlled selective photocatalytic oxidation of benzyl alcohol over Ni@C/TiO2. Catal. Commun. 2023, 176, 106628. [Google Scholar] [CrossRef]
- Lu, X.; Liu, F.; Dang, Y.; Li, M.; Ruan, M.; Wu, M.; Zhu, C.; Mani, T.; Suib, S.L.; Gao, P.-X. Transition-metal doped titanate nanowire photocatalysts boosted by selective ion-exchange induced defect engineering. Appl. Surf. Sci. 2022, 591, 153116. [Google Scholar] [CrossRef]
- Daia, G.; Liua, S.; Lianga, Y.; Luo, T. Synthesis and enhanced photoelectrocatalytic activity of p–n junction Co3O4/TiO2 nanotube arrays. Appl. Surf. Sci. 2013, 264, 157–161. [Google Scholar] [CrossRef]
- Chen, J.; Wang, M.; Han, J.; Guo, R. TiO2 nanosheet/NiO nanorod hierarchical nanostructures: P–n heterojunctions towards efficient photocatalysis. J. Colloid Interface Sci. 2020, 562, 313–321. [Google Scholar] [CrossRef]
- Uddin, T.; Nicolas, Y.; Oliver, C.; Jaegermann, W.; Rockstroh, N.; Junge, H.; Toupance, T. Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. Phys. Chem. Chem. Phys. 2017, 19, 19279–19288. [Google Scholar] [CrossRef]
- Tseng, Y.-H.; Huang, B.-K. Photocatalytic Degradation of NOx Using Ni-Containing TiO2. Int. J. Photoenergy 2012, 2012, 832180. [Google Scholar] [CrossRef] [Green Version]
- Teodorescu, C.M.; Esteva, J.M.; Karnatak, R.C.; El Afif, A. An approximation of the Voigt I profile for the fitting of experimental x-ray absorption data. Nucl. Instrum. Meth. Phys. Res. A 1994, 345, 141–147. [Google Scholar] [CrossRef]
- Shindo, T.; Koizumi, N.; Hatekeyama, K.; Ikeuchi, T. Post-synthesis of TiO2 Dispersed Inside the Pore Channels of SBA-15 and its Photocatalytic Activity for the Degradation of Methylene Blue. Int. J. Soc. Mater. Eng. Resour. 2011, 18, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Ziebro, J.; Łukasiewicz, I.; Borowiak-Palen, E.; Michalkiewicz, B. Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 2010, 21, 145308. [Google Scholar] [CrossRef]
- Sacaliuc, E.; Beale, A.M.; Weckhuysen, B.M.; Nijhuis, T.A. Propene epoxidation over Au/Ti-SBA-15 catalysts. J. Catal. 2007, 248, 235–248. [Google Scholar] [CrossRef]
- Yadav, R.; Amoli, V.; Singh, J.; Tripathi, M.K.; Bhanja, P.; Bhaumik, A.; Sinha, A.K. Plasmonic gold deposited on mesoporous TixSi1-xO2 with isolated silica in lattice: An excellent photocatalyst for photocatalytic conversion of CO2 into methanol under visible light irradiation. J. CO2 Util. 2018, 27, 11–21. [Google Scholar] [CrossRef]
- Ravindra, A.V.; Behera, B.C.; Padhan, P. Laser Induced Structural Phase Transformation of Cobalt Oxides Nanostructures. J. Nanosci. Nanotechnol. 2014, 14, 5591–5595. [Google Scholar] [CrossRef]
- Xu, X.; Sun, Y.; Fan, Z.; Zhao, D.; Xiong, S.; Zhang, B.; Zhou, S.; Liu, G. Mechanisms for ·O−2 and ·OH Production on Flowerlike BiVO4 Photocatalysis Based on Electron Spin Resonance. Front. Chem. 2018, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Graca, I.; González, L.V.; Bacariza, M.C.; Fernandes, A.; Henriques, C.; Lopes, J.M.; Ribeiro, M.F. CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Appl. Catal. B Environ. 2014, 147, 101–110. [Google Scholar] [CrossRef]
- Lin, T.J.; Meng, X.; Shi, L. Ni-exchanged Y-zeolite- An efficient heterogeneous catalyst for acetylene hydrocarboxylation. Appl. Catal. A 2014, 485, 163–171. [Google Scholar] [CrossRef]
- Mohan, V.; Raghavendra, C.; Pramod, C.V.; Raju, B.D.; Rao, K.S.R. Ni/H-ZSM-5 as a promising catalyst for vapour phase hydrogenation of levulinic acid at atmospheric pressure. RSC Adv. 2014, 4, 9660. [Google Scholar] [CrossRef]
- Deshmane, V.G.; Owen, S.L.; Abrokwah, R.Y.; Kuila, D. Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: Effect of metal-support interactions on steamreforming of methanol. J. Mol. Catal A 2015, 408, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Ivan, S.B.; Fechete, I.; Papa, F.; Marcu, I.C. Ethane oxydehydrogenation over TiP2O7-supported NiO catalysts. Catal. Today 2021, 366, 133–140. [Google Scholar] [CrossRef]
- Jongsomjit, B.; Panpranot, J.; Goodwin, J.G., Jr. Co-support compound formation in alumina-supported cobalt catalysts. J. Catal. 2001, 204, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wei, D.; Hammache, S.; Goodwin, J.G., Jr. Effect of Water Vapor on the Reduction of Ru-Promoted Co/Al2O3. J. Catal. 1999, 188, 281–290. [Google Scholar] [CrossRef]
- Srisawad, N.; Chaitree, W.; Mekasuwandumrong, O.; Shotipruk, A.; Jongsomjit, B.; Panpranot, J. CO2 hydrogenation over Co/Al2O3 catalysts prepared via a solid-state reaction of fine gibbsite and cobalt precursors. React. Kinet. Mech. Catal. 2012, 107, 179–188. [Google Scholar] [CrossRef]
- Ji, Y.; Zhao, Z.; Duan, A.; Jiang, G.; Liu, J. Comparative Study on the Formation and Reduction of Bulk and Al2O3-Supported Cobalt Oxides by H2-TPR Technique. J. Phys. Chem. C 2009, 113, 7186–7199. [Google Scholar] [CrossRef]
- Kruatim, J.; Jantasee, S.; Jongsomjit, B. Improvement of Cobalt Dispersion on Co/SBA-15 and Co/SBA-16 Catalysts by Ultrasound and Vacuum Treatments during Post-Impregnation Step. Eng. J. 2017, 21, 17–28. [Google Scholar] [CrossRef]
- Solsona, B.; Davies, T.E.; Garcia, T.; Vazquez, I.; Dejoz, A.; Taylor, S.H. Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Appl. Catal. B 2008, 84, 176–184. [Google Scholar] [CrossRef]
- Nasir, J.A.; Islam, N.; Rehman, Z.; Butler, I.S.; Munir, A.; Nishina, Y. Co and Ni assisted CdS@g-C3N4 nanohybrid: A photocatalytic system for efficient hydrogen, evolution reaction. Mater. Chem. Phys. 2021, 259, 124140. [Google Scholar] [CrossRef]
- Yao, S.; Tang, H.; Liu, M.; Chen, L.; Jing, M.; Shen, X.; Li, T.; Tan, J. TiO2 nanoparticles incorporation in carbon nanofiber as a multi-functional interlayer toward ultralong cycle-life lithium-sulfur batteries. J. Alloys Compd. 2019, 788, 639–648. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y. Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review. Aerosol Air Qual. Res. 2014, 14, 453–469. [Google Scholar] [CrossRef]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef] [Green Version]
Sample | hY | hYT2N | hYT5N | hYT10N | hYT2C | hYT5C | hYT10C |
---|---|---|---|---|---|---|---|
SBET (m2/g) | 810 | 100 | 98 | 91 | 99 | 50 | 89 |
Vpore (cm3/g) | 0.2 | 0.08 | 0.08 | 0.08 | 0.1 | 0.06 | 0.09 |
Eg (eV) | - | 2.18 | 2.93 | 2.88 | 1.55 | 2.51 | 2.05 |
Sample | The Metallic Species | µmol H2/g |
---|---|---|
YT5C | Co2+, Co3+ | 1109 |
YT5N | Ni2+, Ni0 | 869 |
hYT10C | Co2+, Co3+, Ti4+, Ti3+ | 1151 |
hYT10N | Ni2+,Ni0 | 916 |
hYT5N | Ti4+,Ti3+ | 858 |
hYT5C | Co3+, Co2+ | 1090 |
Sample | Element | BE (eV) | Ampl. (cps) | Assignment | |
---|---|---|---|---|---|
hYT2C | Ti2p | C1 | 456.06 | 84.85 | Ti(III) |
C2 | 458.15 | 408.71 | Ti(IV) | ||
Ti(III)/Ti(IV) | 0.21 | ||||
Co 2p | C1 | 778.92 | 480.6 | Co(III) | |
C2 | 780.88 | 214.7 | Co(II) | ||
Co(II)/Co(III) | 0.45 | ||||
YT5C | Ti 2p | C1 | 458.07 | 242.65 | Ti(IV) |
Co 2p | C1 | 780.04 | 1229.39 | Co(III) | |
C2 | 781.65 | 471.77 | Co(II) | ||
Co(II)/Co(III) | 0.38 | ||||
hYT2N | Ti 2p | C2 | 456.04 | 77.38 | Ti(III) |
C3 | 458.15 | 223.11 | Ti(IV) | ||
Ti(III)/Ti(IV) | 0.35 | ||||
Ni 2p | C1 | 852.75 | 124.61 | Ni metallic | |
C2 | 854.5 | 673.48 | Ni(II) | ||
Ni(0)/Ni(II) | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petcu, G.; Papa, F.; Atkinson, I.; Baran, A.; Apostol, N.G.; Petrescu, S.; Richaudeau, L.; Blin, J.-L.; Parvulescu, V. Co- and Ni-Doped TiO2 Nanoparticles Supported on Zeolite Y with Photocatalytic Properties. Nanomaterials 2023, 13, 2200. https://doi.org/10.3390/nano13152200
Petcu G, Papa F, Atkinson I, Baran A, Apostol NG, Petrescu S, Richaudeau L, Blin J-L, Parvulescu V. Co- and Ni-Doped TiO2 Nanoparticles Supported on Zeolite Y with Photocatalytic Properties. Nanomaterials. 2023; 13(15):2200. https://doi.org/10.3390/nano13152200
Chicago/Turabian StylePetcu, Gabriela, Florica Papa, Irina Atkinson, Adriana Baran, Nicoleta G. Apostol, Simona Petrescu, Lionel Richaudeau, Jean-Luc Blin, and Viorica Parvulescu. 2023. "Co- and Ni-Doped TiO2 Nanoparticles Supported on Zeolite Y with Photocatalytic Properties" Nanomaterials 13, no. 15: 2200. https://doi.org/10.3390/nano13152200
APA StylePetcu, G., Papa, F., Atkinson, I., Baran, A., Apostol, N. G., Petrescu, S., Richaudeau, L., Blin, J. -L., & Parvulescu, V. (2023). Co- and Ni-Doped TiO2 Nanoparticles Supported on Zeolite Y with Photocatalytic Properties. Nanomaterials, 13(15), 2200. https://doi.org/10.3390/nano13152200