Electrodeposition Synthesis of Coral-like MnCo Selenide Binder-Free Electrodes for Aqueous Asymmetric Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MnCo Selenide
2.2. Characterization
2.3. Electrochemical Measurements
3. Results
3.1. Structure Characterization
3.2. Electrochemical Performance
3.3. Electrochemical Performance of MCSe-400//AC Asymmetric Supercapacitor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 2017, 29, 1605336. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Ghosh, S.; Thakur, D.; Lee, C.P.; Sahoo, P.K. Recent advancements of zero-to three-dimensional carbon networks with two-dimensional electrode material for high-performance supercapacitor. Nanoscale Adv. 2023, 5, 3146–3176. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.A.; Chodankar, N.R.; Abdelkareem, M.A.; Patil, S.J.; Han, Y.K.; Elsaid, K.; Olabi, A.G. All Transition Metal Selenide Composed High-Energy Solid-State Hybrid Supercapacitor. Small 2022, 18, 2200248. [Google Scholar] [CrossRef]
- Fic, K.; Platek, A.; Piwek, J.; Frackowiak, E. Sustainable materials for electrochemical capacitors. Mater. Today 2018, 21, 437–454. [Google Scholar] [CrossRef]
- Pameté, E.; Köps, L.; Kreth, F.A.; Pohlmann, S.; Varzi, A.; Brousse, T.; Balducci, A.; Presser, V. The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading. Adv. Energy Mater. 2023, 13, 2301008. [Google Scholar] [CrossRef]
- Zardkhoshoui, A.M.; Ameri, B.; Davarani, S.S.H. Fabrication of hollow MnFe2O4 nanocubes assembled by CoS2 nanosheets for hybrid supercapacitors. Chem. Eng. J. 2022, 435, 135170. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Du, X.; Zhang, S.; Zong, M. Hollow 1D carbon tube core anchored in Co3O4@ SnS2 multiple shells for constructing binder-free electrodes of flexible supercapacitors. Chem. Eng. J. 2023, 464, 142741. [Google Scholar] [CrossRef]
- Wang, J.; Okabe, J.; Urita, K.; Moriguchi, I.; Wei, M. Cu2S hollow spheres as an anode for high-rate sodium storage performance. J. Electroanal. Chem. 2020, 874, 114523. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Huang, S.; Notohara, H.; Urita, K.; Moriguchi, I.; Wei, M. Rational design of hierarchical SnS2 microspheres with S vacancy for enhanced sodium storage performance. ACS Sustain. Chem. Eng. 2020, 8, 9519–9525. [Google Scholar] [CrossRef]
- Reich, H.J.; Hondal, R.J. Why nature chose selenium. ACS Chem. Biol. 2016, 11, 821–841. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, N.; Mahmood, A.; Saad, M.; Ullah, Z.; Ahmad, W.; Ullah, S. Recent advancements in the synthetic mechanism and surface engineering of transition metal selenides for energy storage and conversion applications. Energy Technol. 2023, 11, 2201416. [Google Scholar] [CrossRef]
- Pathak, M.; Tamang, D.; Kandasamy, M.; Chakraborty, B.; Rout, C.S. A comparative experimental and theoretical investigation on energy storage performance of CoSe2, NiSe2 and MnSe2 nanostructures. Appl. Mater. Today 2020, 19, 100568. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Ye, F.; Liu, W.; Lian, J.; Li, G.; Wang, H.; Hu, L.; Wu, L. Hierarchical mesoporous selenium@ bimetallic selenide quadrilateral nanosheet arrays for advanced flexible asymmetric supercapacitors. J. Mater. Chem. A 2022, 10, 16212–16223. [Google Scholar] [CrossRef]
- Wu, S.; Xue, Y.; Yang, Q.; Hu, Q.; Cui, T.; Su, Q.; Yin, F.; Wang, Y.; Zhan, H. Conductive carbon spheres-supported nickel-cobalt selenide nanoparticles as a high-performance and long-life electrode for supercapacitors. Diamond Relat. Mater. 2021, 111, 108187. [Google Scholar] [CrossRef]
- Shah, M.S.U.; Zuo, X.; Shah, A.; Al-Saeedi, S.I.; Shah, M.Z.U.; Alabbad, E.A.; Hou, H.; Ahmad, S.A.; Arif, M.; Sajjad, M.; et al. CoSe nanoparticles supported NiSe2 nanoflowers cathode with improved energy storage performance for advanced hybrid supercapacitors. J. Energy Storage 2023, 65, 107267. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Gui, P.; Wen, J.; Fu, X.; Fang, G. Bifunctional bamboo-like CoSe2 arrays for high-performance asymmetric supercapacitor and electrocatalytic oxygen evolution. Nanotechnology 2018, 29, 205401. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sarwar, S.; Song, J.; Du, L.; Li, T.; Zhang, Y.; Li, B.; Guo, Q.; Luo, J.; Zhang, X. One-step microwave synthesis of self-supported CoSe2@ NiSe2 nanoflowers on 3D nickel foam for high performance supercapacitors. J. Alloys Compd. 2022, 892, 162079. [Google Scholar] [CrossRef]
- Sheng, P.; Ye, R.; Wu, D.; Zhang, L.; An, X.; Tao, S.; Qian, B.; Chu, P.K. Morphological modulation of cobalt selenide on carbon cloth by Ni doping for high-performance electrodes in supercapacitors. Colloids Surf. A 2021, 624, 126818. [Google Scholar] [CrossRef]
- Vidhya, M.S.; Yuvakkumar, R.; Ravi, G.; Babu, E.S.; Saravanakumar, B.; Nasif, O.; Alharbi, S.A.; Velauthapillai, D. Demonstration of 1.5 V asymmetric supercapacitor developed using MnSe2-CoSe2 metal composite. Ceram. Int. 2021, 47, 11786–11792. [Google Scholar] [CrossRef]
- Sakthivel, M.; Ramaraj, S.; Chen, S.M.; Ho, K.C. Bimetallic vanadium cobalt diselenide nanosheets with additional active sites for excellent asymmetric pseudocapacitive performance: Comparing the electrochemical performances with M–CoSe2 (M= Zn, Mn, and Cu). J. Mater. Chem. A 2019, 7, 12565–12581. [Google Scholar] [CrossRef]
- Cao, X.; Hong, Y.; Zhang, N.; Chen, Q.; Masud, J.; Zaeem, M.A.; Nath, M. Phase exploration and identification of multinary transition-metal selenides as high-efficiency oxygen evolution electrocatalysts through combinatorial electrodeposition. ACS Catal. 2018, 8, 8273–8289. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, B.; Wu, X.; Li, Z.; Lei, L.; Zhang, X. Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2015, 7, 1772–1779. [Google Scholar] [CrossRef]
- Zheng, J.; Bai, X. Preparation of Ni-Co PBA-derived beaded NiSe2/CoSe2/CNT for high-performance supercapacitors. J. Alloys Compd. 2023, 944, 169110. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Ju, J.; Xie, L.; Chen, Y.; Jiang, J. Exploring the effects of temperature-driven phase transition on supercapacitive performance of cobalt diselenide. J. Power Sources 2022, 541, 231683. [Google Scholar] [CrossRef]
- Xiao, G.; Fan, J.; Liao, H.; Gao, S.; Li, S.; Cui, K.; Luo, W.B.; Niu, C.Q.; Chao, Z.S. Synthesis of cobalt diselenide nanoparticles for the integrated all-solid-state supercapacitors. Energy Fuels 2022, 36, 5928–5936. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, H.; Liu, B.; Li, M.; Chen, L.; Chen, C.; Wang, C.; Li, Y.; Min, D. Wood-derived scaffolds decorating with nickel cobalt phosphate nanosheets and carbon nanotubes used as monolithic electrodes for assembling high-performance asymmetric supercapacitor. Chem. Eng. J. 2023, 454, 140453. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Q.; Long, Y.; Wang, F.; Wu, L.; Pan, J.; Lian, Y.; Shi, W.; Song, S. In situ formation of Co9S8 quantum dots in MOF-derived ternary metal layered double hydroxide nanoarrays for high-performance hybrid supercapacitors. Adv. Energy Mater. 2020, 10, 1903193. [Google Scholar] [CrossRef]
- Chen, C.; Wang, S.; Luo, X.; Gao, W.; Huang, G.; Zeng, Y.; Zhu, Z. Reduced ZnCo2O4@ NiMoO4· H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors. J. Power Sources 2019, 409, 112–122. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, L.; Kang, J.; Kim, K.H. Facile synthesis of Manganese selenide anchored in Three-Dimensional carbon nanosheet matrix with enhanced Lithium storage properties. Chem. Eng. J. 2021, 423, 130243. [Google Scholar] [CrossRef]
- Javed, M.S.; Shah, S.S.A.; Hussain, S.; Tan, S.; Mai, W. Mesoporous manganese-selenide microflowers with enhanced electrochemical performance as a flexible symmetric 1.8 V supercapacitor. Chem. Eng. J. 2020, 382, 122814. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, F.; Ge, B.; Sun, L.; Liu, Y.; Shi, W. MOF derived ZnO/C@(Ni, Co) Se2 core–shell nanostructure on carbon cloth for high-performance supercapacitors. Chem. Eng. J. 2022, 427, 130788. [Google Scholar] [CrossRef]
- Tian, Z.; Zhou, K.; Xie, M.; Zhang, Y.; Chen, J.; Du, C.; Wan, L. Self-supported nickel iron selenide@ nickel cobalt boride core-shell nanosheets electrode for asymmetric supercapacitors. Chem. Eng. J. 2022, 447, 137495. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, H.J. Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors. Chem. Eng. J. 2022, 429, 132345. [Google Scholar] [CrossRef]
- Poudel, M.B.; Lohani, P.C.; Acharya, D.; Kandel, D.R.; Kim, A.A.; Yoo, D.J. MOF derived hierarchical ZnNiCo-LDH on vapor solid phase grown CuxO nanowire array as high energy density asymmetric supercapacitors. J. Energy Storage 2023, 72, 108220. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, F.; Wu, X. Nickel-cobalt selenide nanosheets anchored on graphene for high performance all-solid-state asymmetric supercapacitors. J. Electroanal. Chem. 2022, 924, 116863. [Google Scholar] [CrossRef]
- Li, S.; Ruan, Y.; Xie, Q. Morphological modulation of NiCo2Se4 nanotubes through hydrothermal selenization for asymmetric supercapacitor. Electrochim. Acta 2020, 356, 136837. [Google Scholar] [CrossRef]
- Ye, A.; Qi, J.; Sui, Y.; Yang, F.; Wei, F.; He, Y.; Meng, Q.; Sun, Z. In situ growth of FeCo-selenide on Ni foam as high-performance electrode for electrochemical energy storage devices. Nano 2018, 13, 1850078. [Google Scholar] [CrossRef]
- Younas, W.; Naveed, M.; Cao, C.; Khalid, S.; Rafai, S.; Wang, Z.; Wu, Y.; Yang, L. Rapid and simplistic microwave assisted method to synthesise cobalt selenide nanosheets; a prospective material for high performance hybrid supercapacitor. Appl. Surf. Sci. 2020, 505, 144618. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, Y.; Zhang, J.; Wang, Y.; Zhang, X.; Zhang, R.; Huang, L.L.; Zhang, D. Synthesis of bimetallic nickel cobalt selenide particles for high-performance hybrid supercapacitors. RSC Adv. 2022, 12, 1471–1478. [Google Scholar] [CrossRef]
- Quan, L.; Liu, T.; Yi, M.; Chen, Q.; Cai, D.; Zhan, H. Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance. Electrochim. Acta 2018, 281, 109–116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, S.; Liu, S.; Xue, C. Electrodeposition Synthesis of Coral-like MnCo Selenide Binder-Free Electrodes for Aqueous Asymmetric Supercapacitors. Nanomaterials 2023, 13, 2452. https://doi.org/10.3390/nano13172452
Shao S, Liu S, Xue C. Electrodeposition Synthesis of Coral-like MnCo Selenide Binder-Free Electrodes for Aqueous Asymmetric Supercapacitors. Nanomaterials. 2023; 13(17):2452. https://doi.org/10.3390/nano13172452
Chicago/Turabian StyleShao, Siqi, Song Liu, and Changguo Xue. 2023. "Electrodeposition Synthesis of Coral-like MnCo Selenide Binder-Free Electrodes for Aqueous Asymmetric Supercapacitors" Nanomaterials 13, no. 17: 2452. https://doi.org/10.3390/nano13172452
APA StyleShao, S., Liu, S., & Xue, C. (2023). Electrodeposition Synthesis of Coral-like MnCo Selenide Binder-Free Electrodes for Aqueous Asymmetric Supercapacitors. Nanomaterials, 13(17), 2452. https://doi.org/10.3390/nano13172452