An Unprecedented CeO2/C Non-Noble Metal Electrocatalyst for Direct Ascorbic Acid Fuel Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrocatalysts Synthesis
2.3. Single Cell Tests
2.4. DFT Calculation
3. Results and Discussion
3.1. Synthesis and Structural Characterizations of CeO2/C
3.2. Electrochemical Activity of CeO2/C
3.3. Nature of Active Sites and AAOR Mechanism
3.4. Durability of CeO2/C and Its Origins
3.5. DAAFC Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujiwara, N.; Yamazaki, S.-i.; Siroma, Z.; Ioroi, T.; Yasuda, K. l-Ascorbic acid as an alternative fuel for direct oxidation fuel cells. J. Power Sources 2007, 167, 32–38. [Google Scholar] [CrossRef]
- Mondal, S.K.; Raman, R.K.; Shukla, A.K.; Munichandraiah, N. Electrooxidation of ascorbic acid on polyaniline and its implications to fuel cells. J. Power Sources 2005, 145, 16–20. [Google Scholar] [CrossRef][Green Version]
- Chino, I.; Hendrix, K.; Keramati, A.; Muneeb, O.; Haan, J.L. A split pH direct liquid fuel cell powered by propanol or glycerol. Appl. Energy 2019, 251, 113323. [Google Scholar] [CrossRef]
- Hasan, M.M. Environment-Friendly Ascorbic Acid Fuel Cell. Electrochem 2023, 4, 31–41. [Google Scholar] [CrossRef]
- Do, U.P.; Seland, F.; Johannessen, E.A. A micro fuel cell for abiotical catalysis of glucose. J. Power Sources 2020, 478, 229032. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, T.; Lu, S.; Wang, H.; Xiang, Y. A Direct Liquid Fuel Cell with High Power Density Using Reduced Phosphotungstic Acid as Redox Fuel. Energy Environ. Mater. 2021, 5, 1–7. [Google Scholar] [CrossRef]
- Chino, I.; Vega, L.; Keramati, A.; Hendrix, K.; Haan, J.L. A direct liquid fuel cell powered by 1,3- or 1,2-propanediol. Appl. Energy 2020, 262, 114564. [Google Scholar] [CrossRef]
- Shamraiz, U.; Ahmad, Z.; Raza, B.; Badshah, A.; Ullah, S.; Nadeem, M.A. CaO-Promoted Graphene-Supported Palladium Nanocrystals as a Universal Electrocatalyst for Direct Liquid Fuel Cells. ACS Appl. Mater. Interfaces 2020, 12, 4396–4404. [Google Scholar] [CrossRef]
- Fujiwara, N.; Yasuda, K.; Ioroi, T.; Siroma, Z.; Miyazaki, Y.; Kobayashi, T. Direct Polymer Electrolyte Fuel Cells Using L-Ascorbic Acid as a Fuel. Electrochem. Solid-State Lett. 2003, 6, A257. [Google Scholar] [CrossRef]
- Mogi, H.; Fukushi, Y.; Koide, S.; Sano, R.; Sasaki, T.; Nishioka, Y. A Flexible Ascorbic Acid Fuel Cell with a Microchannel Fabricated using MEMS Techniques. J. Phys. Conf. Ser. 2013, 476, 012065. [Google Scholar] [CrossRef]
- Qiu, C.; Chen, H.; Liu, H.; Zhai, Z.; Qin, J.; Lv, Y.; Gao, Z.; Song, Y. The hydrophilicity of carbon for the performance enhancement of direct ascorbic acid fuel cells. Int. J. Hydrogen Energy. 2018, 43, 21908–21917. [Google Scholar] [CrossRef]
- Muneeb, O.; Do, E.; Tran, T.; Boyd, D.; Huynh, M.; Ghosn, G.; Haan, J.L. A direct ascorbate fuel cell with an anion exchange membrane. J. Power Sources 2017, 351, 74–78. [Google Scholar] [CrossRef]
- Mandal, D.; Mondal, S.; Senapati, D.; Satpati, B.; Sangaranarayanan, M.V. Charge Density Modulated Shape-Dependent Electrocatalytic Activity of Gold Nanoparticles for the Oxidation of Ascorbic Acid. J. Phys. Chem. C 2015, 119, 23103–23112. [Google Scholar] [CrossRef]
- Kim, Y.E.; Kim, M.-Y.; Lee, J.K.; Uhm, S.; Seo, G.; Lee, J. Surface modifications of a carbon anode catalyst by control of functional groups for vitamin C fuel cells. Electrocatalysis 2011, 2, 200–206. [Google Scholar] [CrossRef]
- Ganesan, R.; Gedanken, A. Organic–inorganic hybrid materials based on polyaniline/TiO2 nanocomposites for ascorbic acid fuel cell systems. Nanotechnology 2008, 19, 435709. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Shi, Y.; Luo, J.; Zhang, L.; Xiao, D. Diameter-controlled synthesis of polyaniline microtubes and their electrocatalytic oxidation of ascorbic acid. J. Mater. Chem. B 2014, 2, 4122–4129. [Google Scholar] [CrossRef]
- Pan, B.; Zhao, W.; Zhang, X.; Li, J.; Xu, J.; Ma, J.; Liu, L.; Zhang, D.; Tong, Z. Research on the self-assembly of exfoliated perovskite nanosheets (LaNb2O7−) and cobalt porphyrin utilized for the electrocatalytic oxidation of ascorbic acid. RSC Adv. 2016, 6, 46388–46393. [Google Scholar] [CrossRef]
- Devendrachari, M.C.; Thimmappa, R.; Bhat, Z.M.; Shafi, S.P.; Nimbegondi Kotresh, H.M.; Kottaichamy, A.R.; Venugopala Reddy, K.R.; Thotiyl, M.O. A vitamin C fuel cell with a non-bonded cathodic interface. Sustain. Energy Fuels 2018, 2, 1813–1819. [Google Scholar] [CrossRef]
- Fujiwara, N.; Yamazaki, S.-I.; Siroma, Z.; Ioroi, T.; Yasuda, K. Direct oxidation of l-ascorbic acid on a carbon black electrode in acidic media and polymer electrolyte fuel cells. Electrochem. Commun. 2006, 8, 720–724. [Google Scholar] [CrossRef]
- Uhm, S.; Choi, J.; Chung, S.T.; Lee, J. Electrochemically oxidized carbon anode in direct l-ascorbic acid fuel cells. Electrochim. Acta 2007, 53, 1731–1736. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, S.; Gao, R.; Qin, J.; Li, W.; Wang, X.; Zhai, Z.; Tian, D.; Song, Y. Low-temperature synthesis of PdO-CeO2/C toward efficient oxygen reduction reaction. Mater. Today Energy 2020, 18, 100557. [Google Scholar] [CrossRef]
- Lu, P.; Qiao, B.; Lu, N.; Hyun, D.C.; Wang, J.; Kim, M.J.; Liu, J.; Xia, Y. Photochemical Deposition of Highly Dispersed Pt Nanoparticles on Porous CeO2 Nanofibers for the Water-Gas Shift Reaction. Adv. Funct. Mater. 2015, 25, 4153–4162. [Google Scholar] [CrossRef]
- Salarizadeh, P.; Askari, M.B.; Mohammadi, M.; Hooshyari, K. Electrocatalytic performance of CeO2-decorated rGO as an anode electrocatalyst for the methanol oxidation reaction. J. Phys. Chem. Solids. 2020, 142, 109442. [Google Scholar] [CrossRef]
- Murphin Kumar, P.S.; Thiripuranthagan, S.; Imai, T.; Kumar, G.; Pugazhendhi, A.; Vijayan, S.R.; Esparza, R.; Abe, H.; Krishnan, S.K. Pt Nanoparticles Supported on Mesoporous CeO2 Nanostructures Obtained through Green Approach for Efficient Catalytic Performance toward Ethanol Electro-oxidation. ACS Sustain. Chem. Eng. 2017, 5, 11290–11299. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, L.-X.; Luo, Y.; Zeng, Y.; Wang, S.; Wang, H. PdO/Pd-CeO2 hollow spheres with fresh Pd surface for enhancing formic acid oxidation. Chem. Eng. J. 2018, 347, 193–201. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Zhu, T.; Liang, Y.-J.; Zhang, C.-J.; Shi, S.T.; Xu, C.W. CeO2 promoted Au/C catalyst for glycerol electro-oxidation in alkaline medium. J. Energy Inst. 2016, 89, 325–329. [Google Scholar] [CrossRef]
- Yousaf, A.B.; Imran, M.; Uwitonze, N.; Zeb, A.; Zaidi, S.J.; Ansari, T.M.; Yasmeen, G.; Manzoor, S. Enhanced Electrocatalytic Performance of Pt3Pd1 Alloys Supported on CeO2/C for Methanol Oxidation and Oxygen Reduction Reactions. J. Phys. Chem. C 2017, 121, 2069–2079. [Google Scholar] [CrossRef]
- Devlin, F.J.; Finley, J.W.; Stephens, P.J.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields: A Comparison of Local, Nonlocal, and Hybrid Density Functionals. J. Phys. Chem. 1995, 99, 16883–16902. [Google Scholar] [CrossRef]
- Dolg, M.; Stoll, H.; Savin, A.; Preuss, H. Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta 1989, 75, 173–194. [Google Scholar] [CrossRef]
- Dolg, M.; Stoll, H.; Preuss, H. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta 1993, 85, 441–450. [Google Scholar] [CrossRef]
- Petersson, G.A.; Al-Laham, M.A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 1991, 94, 6081–6090. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Tan, Q.; Du, C.; Sun, Y.; Yin, G.; Gao, Y. Pd-around-CeO2−xhybrid nanostructure catalyst: Three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism. J. Mater. Chem. A 2014, 2, 1429–1435. [Google Scholar] [CrossRef]
- Wang, M.; Shen, M.; Jin, X.; Tian, J.; Li, M.; Zhou, Y.; Zhang, L.; Li, Y.; Shi, J. Oxygen Vacancy Generation and Stabilization in CeO2–x by Cu Introduction with Improved CO2 Photocatalytic Reduction Activity. ACS Catal. 2019, 9, 4573–4581. [Google Scholar] [CrossRef]
- Hao, C.; Tang, Y.-B.; Shi, W.-L.; Chen, F.-Y.; Guo, F. Facile solvothermal synthesis of a Z-Scheme 0D/3D CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation. Chem. Eng. J. 2021, 409, 128168. [Google Scholar] [CrossRef]
- Li, J.; Gou, G.; Zhao, H.; Liu, C.; Li, N.; Li, L.; Tan, B.; Lai, B. Efficient peroxymonosulfate activation by CoFe2O4-CeO2 composite: Performance and catalytic mechanism. Chem. Eng. J. 2022, 435, 134840. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J. Magnetic Nanoscaled Fe3O4/CeO2 Composite as an Efficient Fenton-Like Heterogeneous Catalyst for Degradation of 4-Chlorophenol. Environ. Sci. Technol. 2012, 46, 10145–10153. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.P.; Wu, H.S.; Shen, J.; Yin, A.X.; Yan, C.H. Thermally Stable Pt/CeO2 Hetero-Nanocomposites with High Catalytic Activity. J. Am. Chem. Soc. 2010, 132, 4998–4999. [Google Scholar] [CrossRef] [PubMed]
- Kaneto, K.; Nishikawa, M.; Uto, S. Characteristics of Ascorbic Acid Fuel Cells Using SWCNT and PEDOT*PSS Composite Anodes. Chem. Lett. 2019, 48, 1533–1536. [Google Scholar] [CrossRef]
- Choun, M.; Lee, H.J.; Lee, J. Positively charged carbon electrocatalyst for enhanced power performance of L-ascorbic acid fuel cells. J. Energy Chem. 2016, 25, 793–797. [Google Scholar] [CrossRef]
- Lin, W.L.; Li, N.X.; Hu, G.X.; Li, H. Hemin-intercalated layer-by-layer electropolymerized co-deposition of bisphenol A on carbon nanotubes for dual electrocatalysis towards ascorbate oxidation and oxygen reduction. Electrochim. Acta 2020, 340, 9. [Google Scholar] [CrossRef]
- Arbizzani, C.; Beninati, S.; Soavi, F.; Varzi, A.; Mastragostino, M. Supported PtRu on mesoporous carbons for direct methanol fuel cells. J. Power Sources 2008, 185, 615–620. [Google Scholar] [CrossRef]
- Guo, J.S.; Song, G.Q.; Sun, S.G.; Shi, S.Y.; Yang, W.Q.; Jing, Q.; Yan, Y.S.; Xin, Q. Polyol-synthesized PtRu/C and PtRu black for direct methanol fuel cells. J. Power Sources 2007, 168, 299–306. [Google Scholar] [CrossRef]
- Tian, M.; Shi, S.; Shen, Y.; Yin, H. PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell. Electrochim. Acta 2019, 293, 390–398. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, C.; Zhou, Q.; Gao, R.; Guo, Y.; Qin, J.; Wang, D.; Song, Y. An Unprecedented CeO2/C Non-Noble Metal Electrocatalyst for Direct Ascorbic Acid Fuel Cells. Nanomaterials 2023, 13, 2669. https://doi.org/10.3390/nano13192669
Qiu C, Zhou Q, Gao R, Guo Y, Qin J, Wang D, Song Y. An Unprecedented CeO2/C Non-Noble Metal Electrocatalyst for Direct Ascorbic Acid Fuel Cells. Nanomaterials. 2023; 13(19):2669. https://doi.org/10.3390/nano13192669
Chicago/Turabian StyleQiu, Chenxi, Qiang Zhou, Rui Gao, Yizheng Guo, Jiaqi Qin, Dongqi Wang, and Yujiang Song. 2023. "An Unprecedented CeO2/C Non-Noble Metal Electrocatalyst for Direct Ascorbic Acid Fuel Cells" Nanomaterials 13, no. 19: 2669. https://doi.org/10.3390/nano13192669
APA StyleQiu, C., Zhou, Q., Gao, R., Guo, Y., Qin, J., Wang, D., & Song, Y. (2023). An Unprecedented CeO2/C Non-Noble Metal Electrocatalyst for Direct Ascorbic Acid Fuel Cells. Nanomaterials, 13(19), 2669. https://doi.org/10.3390/nano13192669
