Numerical and Experimental Study of Colored Magnetic Particle Mapping via Magnetoelectric Sensors
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Setup
2.2. Sample Preparation
2.3. Image Reconstruction
Algorithm 1. Adopted PGD method for colored MPM application. |
|
2.4. Simulation Procedure
2.5. Measurement Scheme
3. Result and Discussion
3.1. Simulation Results
3.2. Experimental Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kowalewska, B.; Drozdz, W.; Kowalewski, L. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in autism research: Literature review. Ir. J. Psychol. Med. 2021, 39, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Reda, R.; Zanza, A.; Mazzoni, A.; Cicconetti, A.; Testarelli, L.; Di Nardo, D. An Update of the Possible Applications of Magnetic Resonance Imaging (MRI) in Dentistry: A Literature Review. J. Imaging 2021, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Withers, P.J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C.K.; Maire, E.; Manley, M.; Du Plessis, A.; Stock, S.R. X-ray computed tomography. Nat. Rev. Methods Prim. 2021, 1, 18. [Google Scholar] [CrossRef]
- Gleich, B.; Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005, 435, 1214–1217. [Google Scholar] [CrossRef]
- Buzug, T.M.; Bringout, G.; Erbe, M.; Gräfe, K.; Graeser, M.; Grüttner, M.; Halkola, A.; Sattel, T.F.; Tenner, W.; Wojtczyk, H.; et al. Magnetic particle imaging: Introduction to imaging and hardware realization. Z. Med. Phys. 2012, 22, 323–334. [Google Scholar] [CrossRef]
- Rahmer, J.; Weizenecker, J.; Gleich, B.; Borgert, J. Analysis of a 3-D System Function Measured for Magnetic Particle Imaging. IEEE Trans. Med. Imaging 2012, 31, 1289–1299. [Google Scholar] [CrossRef]
- Halkola, A.; Buzug, T.; Rahmer, J.; Gleich, B.; Bontus, C. System Calibration Unit for Magnetic Particle Imaging: Focus Field Based System Function. In Magnetic Particle Imaging; Springer: Berlin/Heidelberg, Germany, 2012; pp. 27–31. [Google Scholar]
- Bui, M.; Le, T.; Yoon, J. A Magnetic Particle Imaging-Based Navigation Platform for Magnetic Nanoparticles Using Interactive Manipulation of a Virtual Field Free Point to Ensure Targeted Drug Delivery. IEEE Trans. Ind. Electron. 2021, 68, 12493–12503. [Google Scholar] [CrossRef]
- Neumann, A.; Gräfe, K.; von Gladiss, A.; Ahlborg, M.; Behrends, A.; Chen, X.; Schumacher, J.; Soares, Y.B.; Friedrich, T.; Wei, H.; et al. Recent developments in magnetic particle imaging. J. Magn. Magn. Mater. 2022, 550, 169037. [Google Scholar] [CrossRef]
- Schofield, R.; King, L.; Tayal, U.; Castellano, I.; Stirrup, J.; Pontana, F.; Earls, J.; Nicol, E. Image reconstruction: Part 1—Understanding filtered back projection, noise and image acquisition. J. Cardiovasc. Comput. Tomogr. 2020, 14, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Schilling, M.; Ludwig, F. Spatial and Temperature Resolutions of Magnetic Nanoparticle Temperature Imaging with a Scanning Magnetic Particle Spectrometer. Nanomaterials 2018, 8, 886. [Google Scholar] [CrossRef] [PubMed]
- Klemme, T.M.B.T.; Neumanna, A. Investigating methods for temperature reconstruction based on simulated data. Int. J. Magn. Part. Imaging 2022, 8. [Google Scholar] [CrossRef]
- Kim, D.; Sra, S.; Dhillon, I.S. A non-monotonic method for large-scale non-negative least squares. Optim. Methods Softw. 2013, 28, 1012–1039. [Google Scholar] [CrossRef]
- Lukat, N.; Friedrich, R.-M.; Spetzler, B.; Kirchhof, C.; Arndt, C.; Thormählen, L.; Faupel, F.; Selhuber-Unkel, C. Mapping of magnetic nanoparticles and cells using thin film magnetoelectric sensors based on the delta-E effect. Sens. Actuators A Phys. 2020, 309, 112023. [Google Scholar] [CrossRef]
- Muslu, Y.; Utkur, M.; Demirel, O.; Saritas, E.U. Calibration-Free Relaxation-Based Multi-Color Magnetic Particle Imaging. IEEE Trans. Med. Imaging 2018, 37, 1920–1931. [Google Scholar] [CrossRef] [PubMed]
- Rahmer, J.; Halkola, A.; Gleich, B.; Schmale, I.; Borgert, J. First experimental evidence of the feasibility of multi-color magnetic particle imaging. Phys. Med. Biol. 2015, 60, 1775–1791. [Google Scholar] [CrossRef]
- Sadeghi, M.; Hojjat, Y.; Khodaei, M. Design, analysis, and optimization of a magnetoelectric actuator using regression modeling, numerical simulation and metaheuristics algorithm. J. Mater. Sci. Mater. Electron. 2019, 30, 16527–16538. [Google Scholar] [CrossRef]
- Lage, E.; Kirchhof, C.; Hrkac, V.; Kienle, L.; Jahns, R.; Knöchel, R.; Quandt, E.; Meyners, D. Exchange biasing of magnetoelectric composites. Nat. Mater. 2012, 11, 523–529. [Google Scholar] [CrossRef]
- Sadeghi, M.; Hojjat, Y.; Khodaei, M. Self-sensing feature of the ultrasonic nano-displacement actuator in Metglas/PMN-PT/Metglas. J. Mater. Sci. Mater. Electron. 2020, 31, 740–751. [Google Scholar] [CrossRef]
- Elzenheimer, E.; Bald, C.; Engelhardt, E.; Hoffmann, J.; Hayes, P.; Arbustini, J.; Bahr, A.; Quandt, E.; Höft, M.; Schmidt, G. Quantitative Evaluation for Magnetoelectric Sensor Systems in Biomagnetic Diagnostics. Sensors 2022, 22, 1018. [Google Scholar] [CrossRef]
- Friedrich, R.-M.; Zabel, S.; Galka, A.; Lukat, N.; Wagner, J.-M.; Kirchhof, C.; Quandt, E.; McCord, J.; Selhuber-Unkel, C.; Siniatchkin, M.; et al. Magnetic particle mapping using magnetoelectric sensors as an imaging modality. Sci. Rep. 2019, 9, 2086. [Google Scholar] [CrossRef]
- Murase, K.; Song, R.; Hiratsuka, S. Magnetic particle imaging of blood coagulation. Appl. Phys. Lett. 2014, 104, 252409. [Google Scholar] [CrossRef]
- Rauwerdink, A.M.; Weaver, J.B. Measurement of molecular binding using the Brownian motion of magnetic nanoparticle probes. Appl. Phys. Lett. 2010, 96, 033702. [Google Scholar] [CrossRef]
- Stehning, B.G.C.; Rahmer, J. Simultaneous magnetic particle imaging (MPI) and temperature mapping using multi-color MPI. Int. J. Mag. Part. Imag. 2016, 2, 1612001. [Google Scholar]
- Wells, J.; Paysen, H.; Kosch, O.; Trahms, L.; Wiekhorst, F. Temperature dependence in magnetic particle imaging. AIP Adv. 2017, 8, 056703. [Google Scholar] [CrossRef]
- Buchholz, S.B.O.; Sajjamark, K.; Chacon-Caldera, J.; Franke, J.; Hofman, U.G. MPI-based spatio-temporal estimation of a temperature profile induced by an IR laser. Int. J. Magn. Part. Imaging 2022, 8, 2203046. [Google Scholar]
- Durdaut, P.; Reermann, J.; Zabel, S.; Kirchhof, C.; Quandt, E.; Faupel, F.; Schmidt, G.; Knochel, R.; Hoft, M. Modeling and Analysis of Noise Sources for Thin-Film Magnetoelectric Sensors Based on the Delta-E Effect. IEEE Trans. Instrum. Meas. 2017, 66, 2771–2779. [Google Scholar] [CrossRef]
- Friedrich, R.-M.; Faupel, F. Adaptive Model for Magnetic Particle Mapping Using Magnetoelectric Sensors. Sensors 2022, 22, 894. [Google Scholar] [CrossRef]
- Hansen, C. Discrete Inverse Problems: Insight and Algorithms; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010. [Google Scholar]
- Fetisov, L.Y.; A Burdin, D.; A Ekonomov, N.; Chashin, D.V.; Zhang, J.; Srinivasan, G.; Fetisov, Y.K. Nonlinear magnetoelectric effects at high magnetic field amplitudes in composite multiferroics. J. Phys. D Appl. Phys. 2018, 51, 154003. [Google Scholar] [CrossRef]
- Jia, Y.; Yan, J.; Soga, K.; Seshia, A.A. Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude. Smart Mater. Struct. 2014, 23, 065011. [Google Scholar] [CrossRef]
- Available online: http://www.chemicell.com/products/Magnetic_Nanoparticle/Magnetic_Nanoparticles.html (accessed on 9 January 2023).
Characteristic (Symbol) | Unit | Value |
---|---|---|
Resonance frequency (fr) | Hz | 7639 |
Sensitivity (S) | kV/T | 93.0 |
Noise density (Nd) | 385 | |
Limit of detection (LOD) | 4 |
Spatial Component (Symbol) | ||
---|---|---|
X | 0.0110 | 0.0588 |
Y | 0.9958 | 0.0950 |
Z | 0.0904 | 0.9937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedrich, R.-M.; Sadeghi, M.; Faupel, F. Numerical and Experimental Study of Colored Magnetic Particle Mapping via Magnetoelectric Sensors. Nanomaterials 2023, 13, 347. https://doi.org/10.3390/nano13020347
Friedrich R-M, Sadeghi M, Faupel F. Numerical and Experimental Study of Colored Magnetic Particle Mapping via Magnetoelectric Sensors. Nanomaterials. 2023; 13(2):347. https://doi.org/10.3390/nano13020347
Chicago/Turabian StyleFriedrich, Ron-Marco, Mohammad Sadeghi, and Franz Faupel. 2023. "Numerical and Experimental Study of Colored Magnetic Particle Mapping via Magnetoelectric Sensors" Nanomaterials 13, no. 2: 347. https://doi.org/10.3390/nano13020347
APA StyleFriedrich, R.-M., Sadeghi, M., & Faupel, F. (2023). Numerical and Experimental Study of Colored Magnetic Particle Mapping via Magnetoelectric Sensors. Nanomaterials, 13(2), 347. https://doi.org/10.3390/nano13020347