Halogen-Doped Chevrel Phase Janus Monolayers for Photocatalytic Water Splitting
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balan, A.P.; Puthirath, A.B.; Roy, S.; Costin, G.; Oliveira, E.F.; Saadi, M.; Sreepal, V.; Friedrich, R.; Serles, P.; Biswas, A.; et al. Non-Van Der Waals Quasi-2D Materials; Recent Advances in Synthesis, Emergent Properties and Applications. Mater. Today 2022, 58, 164–200. [Google Scholar] [CrossRef]
- Gibaja, C.; Rodríguez-San-Miguel, D.; Paz, W.S.; Torres, I.; Salagre, E.; Segovia, P.; Michel, E.G.; Assebban, M.; Ares, P.; Hernández-Maldonado, D. Exfoliation of Alpha-Germanium: A Covalent Diamond-Like Structure. Adv. Mater. 2021, 33, 2006826. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Felser, C.; Yan, B. Graphene-Like Dirac States and Quantum Spin Hall Insulators in Square-Octagonal MX2(M = Mo, W; X = S, Se, Te) Isomers. Phys. Rev. B 2015, 92, 165421. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Kou, L.; Li, X.; Dai, Y.; Heine, T. Two-Dimensional Transition Metal Dichalcogenides with a Hexagonal Lattice: Room-Temperature Quantum Spin Hall Insulators. Phys. Rev. B 2016, 93, 035442. [Google Scholar] [CrossRef] [Green Version]
- Gavryushkin, P.; Sagatov, N.; Sukhanova, E.; Medrish, I.; Popov, Z. Janus Structures of SMoSe and SVSe Compositions with Low Enthalpy and Unusual Crystal Chemistry. J. Appl. Crystallogr. 2022, 55, 1324–1335. [Google Scholar] [CrossRef]
- Sukhanova, E.V.; Bereznikova, L.A.; Manakhov, A.M.; Al Qahtani, H.S.; Popov, Z.I. A Novel Membrane-like 2D A’-MoS2 as Anode for Lithium- and Sodium-Ion Batteries. Membranes 2022, 12, 1156. [Google Scholar] [CrossRef]
- Sukhanova, E.; Kvashnin, A.; Bereznikova, L.; Zakaryan, H.; Aghamalyan, M.; Kvashnin, D.G.; Popov, Z. 2D-Mo3S4 Phase as Promising Contact for MoS2. Appl. Surf. Sci. 2022, 589, 152971. [Google Scholar] [CrossRef]
- Joseph, T.; Ghorbani-Asl, M.; Kvashnin, A.G.; Larionov, K.V.; Popov, Z.; Sorokin, P.B.; Krasheninnikov, A.V. Nonstoichiometric Phases of Two-Dimensional Transition-Metal Dichalcogenides: From Chalcogen Vacancies to Pure Metal Membranes. J. Phys. Chem. Lett. 2019, 10, 6492–6498. [Google Scholar] [CrossRef]
- Chepkasov, I.V.; Sukhanova, E.V.; Kvashnin, A.G.; Zakaryan, H.A.; Aghamalyan, M.A.; Mamasakhlisov, Y.S.; Manakhov, A.M.; Popov, Z.I.; Kvashnin, D.G. Computational Design of Gas Sensors Based on V3S4 Monolayer. Nanomaterials 2022, 12, 774. [Google Scholar] [CrossRef]
- Sukhanova, E.V.; Kvashnin, A.G.; Agamalyan, M.A.; Zakaryan, H.A.; Popov, Z.I. Map of Two-Dimensional Tungsten Chalcogenide Compounds (W–S, W–Se, W–Te) Based on USPEX Evolutionary Search. JETP Lett. 2022, 115, 292–296. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, Q.; Xu, W.; Cao, J. High Anisotropic Optoelectronics in Monolayer Binary M8X12 (M = Mo, W; X = S, Se, Te). ACS Appl. Mater. Interfaces 2022, 14, 27056–27062. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guan, X.; Ren, X.; Liu, T.; Huang, W.; Cao, J.; Jin, C. Deriving 2D M2X3 (M = Mo, W, X = S, Se) by Periodic Assembly of Chalcogen Vacancy Lines in Their MX2 Counterparts. Nanoscale 2020, 12, 8285–8293. [Google Scholar] [CrossRef]
- Chevrel, R.; Sergent, M.; Prigent, J. Sur de Nouvelles Phases Sulfurées Ternaires Du Molybdène. J. Solid State Chem. 1971, 3, 515–519. [Google Scholar] [CrossRef]
- Singstock, N.R.; Ortiz-Rodríguez, J.C.; Perryman, J.T.; Sutton, C.; Velázquez, J.M.; Musgrave, C.B. Machine Learning Guided Synthesis of Multinary Chevrel Phase Chalcogenides. J. Am. Chem. Soc. 2021, 143, 9113–9122. [Google Scholar] [CrossRef]
- Peña, O. Chevrel Phases: Past, Present and Future. Phys. C Supercond. Its Appl. 2015, 514, 95–112. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Y.; Li, H.; Wang, K.; Jiang, K. Large-Scale Fabricating Carbon Coating Chevrel Phase in Molten Salts: Implications for High-Performance Magnesium-Ion Battery Cathode. J. Alloys Compd. 2022, 925, 166745. [Google Scholar] [CrossRef]
- Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype Systems for Rechargeable Magnesium Batteries. Nature 2000, 407, 724–727. [Google Scholar] [CrossRef]
- Geng, L.; Lv, G.; Xing, X.; Guo, J. Reversible Electrochemical Intercalation of Aluminum in Mo6S8. Chem. Mater. 2015, 27, 4926–4929. [Google Scholar] [CrossRef]
- Tong, Y.; Gao, A.; Zhang, Q.; Gao, T.; Yue, J.; Meng, F.; Gong, Y.; Xi, S.; Lin, Z.; Mao, M.; et al. Cation-Synergy Stabilizing Anion Redox of Chevrel Phase Mo6S8 in Aluminum Ion Battery. Energy Storage Mater. 2021, 37, 87–93. [Google Scholar] [CrossRef]
- Elgendy, A.; Papaderakis, A.A.; Byrne, C.; Sun, Z.; Lauritsen, J.V.; Higgins, E.P.C.; Ejigu, A.; Cernik, R.; Walton, A.S.; Lewis, D.J.; et al. Nanoscale Chevrel-Phase Mo6S8 Prepared by a Molecular Precursor Approach for Highly Efficient Electrocatalysis of the Hydrogen Evolution Reaction in Acidic Media. ACS Appl. Energy Mater. 2021, 4, 13015–13026. [Google Scholar] [CrossRef]
- Masschelein, P.; Candolfi, C.; Dauscher, A.; Gendarme, C.; Rabih, A.R.A.O.; Gougeon, P.; Potel, M.; Gall, P.; Gautier, R.; Lenoir, B. Influence of S and Te Substitutions on the Thermoelectric Properties of the Cluster Compound Ag3.8Mo9Se11. J. Alloys Compd. 2018, 739, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Marini, G.; Sanna, A.; Pellegrini, C.; Bersier, C.; Tosatti, E.; Profeta, G. Superconducting Chevrel Phase PbMo6S8 from First Principles. Phys. Rev. B 2021, 103, 144507. [Google Scholar] [CrossRef]
- Chen, J.; Millis, A.J.; Reichman, D.R. Intermolecular Coupling and Superconductivity in PbMo6S8 and Other Chevrel Phase Compounds. Phys. Rev. Mater. 2018, 2, 114801. [Google Scholar] [CrossRef]
- Mao, M.; Lin, Z.; Tong, Y.; Yue, J.; Zhao, C.; Lu, J.; Zhang, Q.; Gu, L.; Suo, L.; Hu, Y.-S.; et al. Iodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo6S8 Nanosheets for Advanced Multivalent Batteries. ACS Nano 2020, 14, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Chevrel, R.; Sergent, M. Chemistry and Structure of Ternary Molybdenum Chalcogenides. In Superconductivity in Ternary Compounds I: Structural, Electronic, and Lattice Properties; Fischer, Ø., Maple, M.B., Eds.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 25–86. ISBN 978-3-642-81868-4. [Google Scholar]
- Chang, C.L.; Tao, Y.K.; Swinnea, J.S.; Steinfink, H. Oxygen Substitution in Sn and Ni Chevrel Phases. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1987, 43, 1461–1465. [Google Scholar] [CrossRef]
- Sergent, M.; Fischer, Ø.; Decroux, M.; Perrin, C.; Chevrel, R. Stabilization of Mo6S8 by Halogens; New Superconducting Compounds: Mo6S6Br2, Mo6S6I2. J. Solid State Chem. 1977, 22, 87–92. [Google Scholar] [CrossRef]
- Knöll, R.; Goren, S.; Korn, C.; Shames, A.; Perrin, C.; Privalov, A.; Vieth, H.-M. NMR Study of the Influence of Iodine Substitution in the Chevrel Compounds Mo6Te8−xIx and Mo6Se8−xIx. Phys. B Condens. Matter 2002, 324, 157–166. [Google Scholar] [CrossRef]
- Lin, F.; Fang, Y.; Che, X.; Zhang, S.; Huang, F. Superconductivity in the Electron-Doped Chevrel Phase Compound Mo6S6.8Te1.2. Inorg. Chem. 2020, 59, 6785–6789. [Google Scholar] [CrossRef]
- Zhong, Q.; Dai, Z.; Liu, J.; Zhao, Y.; Meng, S. Phonon Thermal Transport in Janus Single Layer M2XY (M = Ga; X, Y = S, Se, Te): A Study Based on First-Principles. Phys. E Low-Dimens. Syst. Nanostructures 2020, 115, 113683. [Google Scholar] [CrossRef]
- Yin, W.-J.; Tan, H.-J.; Ding, P.-J.; Wen, B.; Li, X.-B.; Teobaldi, G.; Liu, L.-M. Recent Advances in Low-Dimensional Janus Materials: Theoretical and Simulation Perspectives. Mater. Adv. 2021, 2, 7543–7558. [Google Scholar] [CrossRef]
- Lv, M.-H.; Li, C.-M.; Sun, W.-F. Spin-Orbit Coupling and Spin-Polarized Electronic Structures of Janus Vanadium-Dichalcogenide Monolayers: First-Principles Calculations. Nanomaterials 2022, 12, 382. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Shang, J.; Kou, L.; Li, C.; Deng, Z. Mechanical Behaviors in Janus Transition-Metal Dichalcogenides: A Molecular Dynamics Simulation. Nanomaterials 2022, 12, 1910. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Ma, Y.; Huang, B.; Dai, Y. Two-Dimensional Janus PtSSe for Photocatalytic Water Splitting under the Visible or Infrared Light. J. Mater. Chem. A 2019, 7, 603–610. [Google Scholar] [CrossRef]
- Ju, L.; Bie, M.; Shang, J.; Tang, X.; Kou, L. Janus Transition Metal Dichalcogenides: A Superior Platform for Photocatalytic Water Splitting. J. Phys. Mater. 2020, 3, 022004. [Google Scholar] [CrossRef]
- Tang, X.; Kou, L. 2D Janus Transition Metal Dichalcogenides: Properties and Applications. Phys. Status Solidi (B) 2022, 259, 2100562. [Google Scholar] [CrossRef]
- Ju, L.; Qin, J.; Shi, L.; Yang, G.; Zhang, J.; Sun, L. Rolling the WSSe Bilayer into Double-Walled Nanotube for the Enhanced Photocatalytic Water-Splitting Performance. Nanomaterials 2021, 11, 705. [Google Scholar] [CrossRef]
- Lin, L.; Hisatomi, T.; Chen, S.; Takata, T.; Domen, K. Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges. Trends Chem. 2020, 2, 813–824. [Google Scholar] [CrossRef]
- Feliczak-Guzik, A. Nanomaterials as Photocatalysts—Synthesis and Their Potential Applications. Materials 2022, 16, 193. [Google Scholar] [CrossRef]
- Lu, A.-Y.; Zhu, H.; Xiao, J.; Chuu, C.-P.; Han, Y.; Chiu, M.-H.; Cheng, C.-C.; Yang, C.-W.; Wei, K.-H.; Yang, Y.Y.P.; et al. Janus Monolayers of Transition Metal Dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D.; Chen, W.; Guo, H.; Jin, Z.; Shenoy, V.B.; Shi, L.; et al. Janus Monolayer Transition-Metal Dichalcogenides. ACS Nano 2017, 11, 8192–8198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagmurcukardes, M.; Sevik, C.; Peeters, F.M. Electronic, Vibrational, Elastic, and Piezoelectric Properties of Monolayer Janus MoSTe phases: A First-Principles Study. Phys. Rev. B 2019, 100, 045415. [Google Scholar] [CrossRef]
- Wang, Z. 2H→1T′ Phase Transformation in Janus Monolayer MoSSe and MoSTe: An Efficient Hole Injection Contact for 2H-MoS2. J. Mater. Chem. C 2018, 6, 13000–13005. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, H.; Yu, Z.; Liu, Y.; Li, Y. First-Principles Study of Square Phase MX2 and Janus MXY (M = Mo, W; X, Y = S, Se, Te) Transition Metal Dichalcogenide Monolayers under Biaxial Strain. Phys. E Low-Dimens. Syst. Nanostructures 2019, 110, 134–139. [Google Scholar] [CrossRef]
- Tang, X.; Li, S.; Ma, Y.; Du, A.; Liao, T.; Gu, Y.; Kou, L. Distorted Janus Transition Metal Dichalcogenides: Stable Two-Dimensional Materials with Sizable Band Gap and Ultrahigh Carrier Mobility. J. Phys. Chem. C 2018, 122, 19153–19160. [Google Scholar] [CrossRef]
- Qin, Y.; Sayyad, M.; Montblanch, A.R.; Feuer, M.S.G.; Dey, D.; Blei, M.; Sailus, R.; Kara, D.M.; Shen, Y.; Yang, S.; et al. Reaching the Excitonic Limit in 2D Janus Monolayers by In Situ Deterministic Growth. Adv. Mater. 2021, 34, 2106222. [Google Scholar] [CrossRef]
- Wan, X.; Chen, E.; Yao, J.; Gao, M.; Miao, X.; Wang, S.; Gu, Y.; Xiao, S.; Zhan, R.; Chen, K.; et al. Synthesis and Characterization of Metallic Janus MoSH Monolayer. ACS Nano 2021, 15, 20319–20331. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46, 6671. [Google Scholar] [CrossRef]
- Blöchl, P.; Först, C.J.; Schimpl, J. Projector Augmented Wave Method: Ab Initio Molecular Dynamics with Full Wave Functions. Bull. Mater. Sci. 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First Principles Phonon Calculations in Materials Science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bader, R.F.W. Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Oreshonkov, A.S. SI: Advances in Density Functional Theory (DFT) Studies of Solids. Materials 2022, 15, 2099. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First Principles Methods Using CASTEP. Z. Für Krist. -Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Refson, K.; Tulip, P.R.; Clark, S.J. Variational Density-Functional Perturbation Theory for Dielectrics and Lattice Dynamics. Phys. Rev. B 2006, 73, 155114. [Google Scholar] [CrossRef] [Green Version]
- Porezag, D.; Pederson, M.R. Infrared Intensities and Raman-Scattering Activities within Density-Functional Theory. Phys. Rev. B 1996, 54, 7830–7836. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Park, C.-H.; Ihm, J. A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Lett. 2018, 18, 2759–2765. [Google Scholar] [CrossRef]
- Friedrich, R.; Ghorbani-Asl, M.; Curtarolo, S.; Krasheninnikov, A.V. Data-Driven Quest for Two-Dimensional Non-van der Waals Materials. Nano Lett. 2022, 22, 989–997. [Google Scholar] [CrossRef]
- Gu, J.; Zhao, Z.; Huang, J.; Sumpter, B.G.; Chen, Z. MX Anti-MXenes from Non-Van Der Waals Bulks for Electrochemical Applications: The Merit of Metallicity and Active Basal Plane. ACS Nano 2021, 15, 6233–6242. [Google Scholar] [CrossRef]
- Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.E.; Cepellotti, A.; Pizzi, G.; et al. Two-Dimensional Materials from High-Throughput Computational Exfoliation of Experimentally Known Compounds. Nat. Nanotechnol. 2018, 13, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Padilha, A.C.M.; Soares, M.R.S.; Leite, E.R.; Fazzio, A. Theoretical and Experimental Investigation of 2D Hematite. J. Phys. Chem. C 2019, 123, 16359–16365. [Google Scholar] [CrossRef]
- Haga, T.; Fujimoto, Y.; Saito, S. Electronic Structure and Scanning Tunneling Microscopy Images of Heterostructures Consisting of Graphene and Carbon-Doped Hexagonal Boron Nitride Layers. Phys. Rev. B 2019, 100, 125403. [Google Scholar] [CrossRef]
- Vanpoucke, D.E.P.; Brocks, G. Formation of Pt-Induced Ge Atomic Nanowires on Pt/Ge(001): A Density Functional Theory Study. Phys. Rev. B 2008, 77, 241308. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Z.; Yang, J. Proposed Photosynthesis Method for Producing Hydrogen from Dissociated Water Molecules Using Incident Near-Infrared Light. Phys. Rev. Lett. 2014, 112, 018301. [Google Scholar] [CrossRef] [PubMed]
- Chakrapani, V.; Angus, J.C.; Anderson, A.B.; Wolter, S.D.; Stoner, B.R.; Sumanasekera, G.U. Charge Transfer Equilibria between Diamond and an Aqueous Oxygen Electrochemical Redox Couple. Science 2007, 318, 1424–1430. [Google Scholar] [CrossRef] [Green Version]
- Ersan, F.; Ataca, C. Janus PtXnY2−n (X, Y = S, Se, Te ; 0 ≤ n ≤ 2) Monolayers for Enhanced Photocatalytic Water Splitting. Phys. Rev. Appl. 2020, 13, 064008. [Google Scholar] [CrossRef]
- Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear Optical Properties in the Projector-Augmented Wave Methodology. Phys. Rev. B 2006, 73, 045112. [Google Scholar] [CrossRef] [Green Version]
- Eberlein, T.; Bangert, U.; Nair, R.R.; Jones, R.; Gass, M.; Bleloch, A.L.; Novoselov, K.; Geim, A.; Briddon, P.R. Plasmon Spectroscopy of Free-Standing Graphene Films. Phys. Rev. B 2008, 77, 233406. [Google Scholar] [CrossRef] [Green Version]
- Lalitha, S.; Karazhanov, S.; Ravindran, P.; Senthilarasu, S.; Sathyamoorthy, R.; Janabergenov, J. Electronic Structure, Structural and Optical Properties of Thermally Evaporated CdTe Thin Films. Phys. B Condens. Matter 2007, 387, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Potel, M.; Gougeon, P.; Chevrel, R.; Sergent, M. Labilité Des Cations Dans Les Chalcogénures Ternaires de Molybdène: Voies d’accès à de Nouvelles Synthèses. Rev. De Chim. Minérale 1984, 21, 509–536. [Google Scholar]
- Chu, H.; Pan, J.; Bai, S.; Ma, Y.; Feng, Y.; Wen, Y.; Yang, Y.; Luo, R.; Chen, A. Carbon Coated Chevrel Phase of Mo6S8 as Anode Material for Improving Electrochemical Properties of Aqueous Lithium-Ion Batteries. Electrochim. Acta 2017, 258, 236–240. [Google Scholar] [CrossRef]
- Kong, D.; Wang, Y.; Von Lim, Y.; Huang, S.; Zhang, J.; Liu, B.; Chen, T.; Yang, H.Y. 3D Hierarchical Defect-Rich NiMo3S4 Nanosheet Arrays Grown on Carbon Textiles for High-Performance Sodium-Ion Batteries and Hydrogen Evolution Reaction. Nano Energy 2018, 49, 460–470. [Google Scholar] [CrossRef]
- Holmgren, D.J.; Demers, R.T.; Klein, M.V.; Ginsberg, D.M. Raman Study of Phonons in Chevrel-Phase Crystals. Phys. Rev. B 1987, 36, 1952–1955. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.-S.; Hu, Q.; Li, S.; Bhoraskar, S.V.; Yoo, J.-B. Synthesis of Novel 1—Dimensional Structure from Mo6S8 Chevrel Phase of Electrode for Mg Batteries. Mater. Res. Express 2022, 9, 085502. [Google Scholar] [CrossRef]
- Yao, Y.; Ao, K.; Lv, P.; Wei, Q. MoS2 Coexisting in 1T and 2H Phases Synthesized by Common Hydrothermal Method for Hydrogen Evolution Reaction. Nanomaterials 2019, 9, 844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oreshonkov, A.S.; Sukhanova, E.V.; Popov, Z.I. Raman Spectroscopy of Janus MoSSe Monolayer Polymorph Modifications Using Density Functional Theory. Materials 2022, 15, 3988. [Google Scholar] [CrossRef] [PubMed]
Ch12Mo3Ch22 Monolayer | a, Å | b, Å | γ, ° |
---|---|---|---|
S2Mo3S2 | 6.518 | 6.623 | 84.89 |
Se2Mo3Se2 | 6.644 | 6.738 | 85.10 |
Te2Mo3Te2 | 6.834 | 6.902 | 89.73 |
S2Mo3Se2 | 6.644 | 6.738 | 85.10 |
S2Mo3O2 | 6.190 | 6.425 | 84.10 |
S2Mo3Te2 | 6.834 | 6.902 | 89.73 |
Se2Mo3O2 | 6.499 | 6.543 | 88.66 |
Se2Mo3Te2 | 6.943 | 6.957 | 87.39 |
Te2Mo3O2 | 6.861 | 7.074 | 90.92 |
Ch2Mo3Hal2 Monolayer | a, Å | b, Å | γ, ° |
---|---|---|---|
O2Mo3F2 | 6.148 | 6.131 | 85.87 |
O2Mo3Cl2 | 6.362 | 6.286 | 87.38 |
O2Mo3Br2 | 6.864 | 6.436 | 87.31 |
O2Mo3I2 | 7.337 | 7.328 | 84.04 |
S2Mo3F2 | 6.517 | 6.521 | 86.01 |
S2Mo3Cl2 | 6.656 | 6.637 | 86.49 |
S2Mo3Br2 | 6.791 | 6.773 | 86.60 |
S2Mo3I2 | 7.061 | 7.033 | 86.38 |
Se2Mo3F2 | 6.720 | 6.741 | 85.78 |
Se2Mo3Cl2 | 6.796 | 6.780 | 86.45 |
Se2Mo3Br2 | 6.909 | 6.892 | 86.46 |
Se2Mo3I2 | 7.133 | 7.116 | 86.29 |
Te2Mo3F2 | 7.170 | 7.172 | 85.51 |
Te2Mo3Cl2 | 7.087 | 7.089 | 86.33 |
Te2Mo3Br2 | 7.142 | 7.135 | 86.34 |
Te2Mo3I2 | 7.291 | 7.277 | 86.17 |
Monolayer | (001) Surface | Surface | Eg, eV | ΔΦ, eV |
---|---|---|---|---|
S2Mo3Se2 | Se | S | 0.21 | 0.14 |
S2Mo3O2 | O | S | 0.10 | 0.32 |
S2Mo3Te2 | Te | S | 0.11 | 0.40 |
Se2Mo3Te2 | Te | Se | 0.05 | 0.36 |
O2Mo3F2 | F | O | 1.05 | 0.65 |
O2Mo3Cl2 | O | Cl | 1.10 | 0.54 |
S2Mo3F2 | F | S | 1.17 | 1.17 |
S2Mo3Cl2 | Cl | S | 1.03 | 1.41 |
S2Mo3Br2 | Br | S | 0.89 | 1.45 |
S2Mo3I2 | I | S | 0.82 | 1.51 |
Se2Mo3Cl2 | Cl | Se | 0.94 | 1.29 |
Se2Mo3Br2 | Br | Se | 0.82 | 1.33 |
Se2Mo3I2 | I | Se | 0.80 | 1.41 |
Te2Mo3Cl2 | Cl | Te | 0.80 | 1.06 |
Te2Mo3Br2 | Br | Te | 0.74 | 1.11 |
Te2Mo3I2 | I | Te | 0.59 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhanova, E.V.; Sagatov, N.E.; Oreshonkov, A.S.; Gavryushkin, P.N.; Popov, Z.I. Halogen-Doped Chevrel Phase Janus Monolayers for Photocatalytic Water Splitting. Nanomaterials 2023, 13, 368. https://doi.org/10.3390/nano13020368
Sukhanova EV, Sagatov NE, Oreshonkov AS, Gavryushkin PN, Popov ZI. Halogen-Doped Chevrel Phase Janus Monolayers for Photocatalytic Water Splitting. Nanomaterials. 2023; 13(2):368. https://doi.org/10.3390/nano13020368
Chicago/Turabian StyleSukhanova, Ekaterina V., Nursultan E. Sagatov, Aleksandr S. Oreshonkov, Pavel N. Gavryushkin, and Zakhar I. Popov. 2023. "Halogen-Doped Chevrel Phase Janus Monolayers for Photocatalytic Water Splitting" Nanomaterials 13, no. 2: 368. https://doi.org/10.3390/nano13020368
APA StyleSukhanova, E. V., Sagatov, N. E., Oreshonkov, A. S., Gavryushkin, P. N., & Popov, Z. I. (2023). Halogen-Doped Chevrel Phase Janus Monolayers for Photocatalytic Water Splitting. Nanomaterials, 13(2), 368. https://doi.org/10.3390/nano13020368