Size Effect of Electrical and Optical Properties in Cr2+:ZnSe Nanowires
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. System Stability
3.2. Electrical Properties
3.3. Optical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mirov, S.B.; Fedorov, V.V.; Martyshkin, D.; Moskalev, I.S.; Mirov, M.; Vasilyev, S. Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 292–310. [Google Scholar] [CrossRef]
- Gafarov, O.; Watkins, R.; Fedorov, V.; Mirov, S. Middle Infrared Electroluminescence of Cr2+ ions in n-type Al: Cr: ZnSe crystal. In Advanced Solid State Lasers; Optical Society of America: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Martyshkin, D.V.; Fedorov, V.; Kim, C.; Moskalev, I.S.; Mirov, S.B. Mid-IR random lasing of Cr-doped ZnS nanocrystals. J. Opt. 2010, 12, 024005. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, C.; Ma, E.; Lu, Z.; Wang, F.; Song, Y.; Sun, Q.; Jie, W.; Wang, T. The optical spectra characterization of Cr2+:ZnSe polycrystalline synthesized by direct reaction of Zn–Cr alloy and element Se. Ceram. Int. 2020, 46, 21136–21140. [Google Scholar] [CrossRef]
- Sorokina, I.T. Cr2+-doped II–VI materials for lasers and nonlinear optics. Opt. Mater. 2004, 26, 395–412. [Google Scholar] [CrossRef]
- Sorokina, I.T.; Sorokin, E. Femtosecond Cr2+-Based Lasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 273–291. [Google Scholar] [CrossRef] [Green Version]
- Sennaroglu, A.; Konca, A.O.; Pollock, C.R. Continuous-wave power performance of a 2.47-/spl mu/m Cr/sup 2+: ZnSe laser: Experiment and modeling. IEEE J. Quantum Electron. 2000, 36, 1199–1205. [Google Scholar] [CrossRef]
- DeLoach, L.; Page, R.; Wilke, G.; Payne, S.; Krupke, W. Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media. IEEE J. Quantum Electron. 1996, 32, 885–895. [Google Scholar] [CrossRef]
- Macdonald, J.R.; Beecher, S.J.; Lancaster, A.; Berry, P.A.; Schepler, K.L.; Mirov, S.B.; Kar, A.K. Compact Cr: ZnS channel waveguide laser operating at 2333 nm. Opt. Express 2014, 22, 7052–7057. [Google Scholar] [CrossRef] [Green Version]
- Schepler, K.L.; Peterson, R.D.; Berry, P.A.; McKay, J.B. Thermal effects in Cr/sup 2+: ZnSe thin disk lasers. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 713–720. [Google Scholar] [CrossRef]
- Sorokina, I.T.; Dvoyrin, V.V.; Tolstik, N.; Sorokin, E. Mid-IR ultrashort pulsed fiber-based lasers. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhang, R.; Zhang, Y.; Zhang, S.; Ren, J.; Strizik, L.; Wagner, T.; Farrell, G.; Wang, P. Crystal-field engineering of ultrabroadband mid-infrared emission in Co2+-doped nano-chalcogenide glass composites. J. Eur. Ceram. Soc. 2020, 40, 103–107. [Google Scholar] [CrossRef]
- Myoung, N.; Park, J.S.; Martinez, A.; Peppers, J.; Yim, S.Y.; Han, W.S.; Fedorov, V.V.; Mirov, S.B. Mid-IR spectroscopy of Fe: ZnSe quantum dots. Opt. Express 2016, 24, 5366–5375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Su, W.-S.; Wu, B.-R. Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study. Nanomaterials 2022, 12, 3898. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.; Ghasemi, M.; Sivakumar, S.; Mergenthaler, K.; Persson, A.R.; Metaferia, W.; Magnusson, M.H. Calculation of Hole Concentrations in Zn Doped GaAs Nanowires. Nanomaterials 2020, 10, 2524. [Google Scholar] [CrossRef]
- Hou, W.; Mi, H.; Peng, R.; Peng, S.; Zeng, W.; Zhou, Q. First-Principle Insight into Ga-Doped MoS(2) for Sensing SO(2), SOF(2) and SO(2)F(2). Nanomaterials 2021, 11, 314. [Google Scholar] [CrossRef]
- Kennedy, T.A.; Glaser, E.R.; Klein, P.B.; Bhargava, R.N. Symmetry and electronic structure of the Mn impurity in ZnS nanocrystals. Phys. Rev. B 1995, 52, R14356–R14359. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, R.N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 1994, 72, 416–419. [Google Scholar] [CrossRef]
- Bryan, J.D.; Gamelin, D.R. Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications. Prog. Inorg. Chem. 2005, 54, 47–126. [Google Scholar] [CrossRef]
- Radovanovic, P.V.; Gamelin, D.R. Electronic Absorption Spectroscopy of Cobalt Ions in Diluted Magnetic Semiconductor Quantum Dots: Demonstration of an Isocrystalline Core/Shell Synthetic Method. J. Am. Chem. Soc. 2001, 123, 12207–12214. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.; Meyer, B.; Ekimov, A.; Merkulov, I.; Efros, A.; Rosen, M.; Couino, G.; Gacoin, T.; Boilot, J. Giant internal magnetic fields in Mn doped nanocrystal quantum dots. Solid State Commun. 2000, 114, 547–550. [Google Scholar] [CrossRef]
- Norris, D.J.; Yao, N.; Charnock, F.T.; Kennedy, T.A. High-Quality Manganese-Doped ZnSe Nanocrystals. Nano Lett. 2001, 1, 3–7. [Google Scholar] [CrossRef]
- Chen, H.; Shi, D.; Qi, J.; Jia, J.; Wang, B. The stability and electronic properties of wurtzite and zinc-blende ZnS nanowires. Phys. Lett. A 2009, 373, 371–375. [Google Scholar] [CrossRef]
- Kresse, G. Software VASP.; VASP Software GmbH: Vienna, Austria, 1999. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Validžić, I.L.; Mitrić, M.; Abazović, N.D.; Jokić, B.M.; Milošević, A.S.; Popović, Z.S.; Vukajlović, F.R. Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap. Semicond. Sci. Technol. 2014, 29, 035007. [Google Scholar] [CrossRef]
- Pi, X.; Chen, X.; Yang, D. First-Principles Study of 2.2 nm Silicon Nanocrystals Doped with Boron. J. Phys. Chem. C 2011, 115, 9838–9843. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, G.; Dai, S.; Ning, S.; Zhou, S. First-principles analysis of the absorption and luminescence properties of Cr2+ -doped ZnSe crystal. Curr. Appl. Phys. 2016, 16, 501–505. [Google Scholar] [CrossRef]
- Zhong, M.; Wang, X.; Liu, S.; Li, B.; Huang, L.; Cui, Y.; Li, J.; Wei, Z. High-performance photodetectors based on Sb2S3 nanowires: Wavelength dependence and wide tem-perature range utilization. Nanoscale 2017, 9, 12364–12371. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, G.; Dai, S.; Ning, S.; Zhou, S. First-principles study of the electronic structures and optical properties of Cr2+-doped ZnSe as a function of impurity concentration. Phys. Status Solidi 2016, 253, 1133–1137. [Google Scholar] [CrossRef]
- Gajdos, M.; Hummer, K.; Kresse, J.G. Furthm üller, and F. Bechstedt. Phys. Rev. B 2006, 73, 045112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, C.; Feng, G. Doping non-uniformity influence on the electrical and optical properties of chromium doped zinc selenide. Mater. Today Commun. 2021, 26, 101946. [Google Scholar] [CrossRef]
- Feng, G.; Yang, C.; Zhou, S. Nanocrystalline Cr2+-doped ZnSe Nanowires Laser. Nano Lett. 2012, 13, 272–275. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhang, Y.; Yao, H.; Wang, H.; Feng, G. A study of the electrical and optical properties of Cr2+: ZnSe nano-sheets by first-principle calculations. Mater. Today Commun. 2022, 33, 104790. [Google Scholar] [CrossRef]
- Peng, Y.; Xia, C.; Tan, Z.; An, J.; Zhang, Q. Size-controlled excitonic effects on electronic and optical properties of Sb2S3 nanowires. Phys. Chem. Chem. Phys. 2019, 21, 26515–26524. [Google Scholar] [CrossRef]
Models | Total Energy (eV) | Defect Formation Energy (eV) |
---|---|---|
NW-1(Zn8Se8) | −87.412 | / |
NW-1(site 1) | −92.257 | 2.265 |
NW-1(site 2) | −93.066 | 1.456 |
NW-2(Zn18Se18) | −168.793 | / |
NW-2(site 1) | −174.461 | 1.442 |
NW-2(site 2) | −174.230 | 1.673 |
NW-2(site 3) | −174.905 | 0.998 |
NW-3(Zn32Se32) | −272.860 | / |
NW-3(site 1) | −278.982 | 0.988 |
NW-3(site 2) | −279.691 | 0.279 |
NW-3(site 3) | −279.938 | 0.030 |
NW-3(site 4) | −279.572 | 0.398 |
Models | Size (Å) | Bandgap (eV) | de Broglie Wavelength (nm) | |||
---|---|---|---|---|---|---|
NW-1 (site 2) | 8.5 | 3.42 | 0.34 | −0.14 | 13 | 20 |
NW-2 (site 3) | 14.2 | 2.67 | 1.17 | −0.16 | 7 | 19 |
NW-3 (site 3) | 19.8 | 2.39 | 1.19 | 0.13 | 7 | 21 |
bulk [30] | / | 2.14 | 0.03 | −0.69 | 44 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; He, S.; Yao, H.; Zuo, H.; Liu, S.; Yang, C.; Feng, G. Size Effect of Electrical and Optical Properties in Cr2+:ZnSe Nanowires. Nanomaterials 2023, 13, 369. https://doi.org/10.3390/nano13020369
Zhang Y, He S, Yao H, Zuo H, Liu S, Yang C, Feng G. Size Effect of Electrical and Optical Properties in Cr2+:ZnSe Nanowires. Nanomaterials. 2023; 13(2):369. https://doi.org/10.3390/nano13020369
Chicago/Turabian StyleZhang, Yuqin, Shi He, Honghong Yao, Hao Zuo, Shuang Liu, Chao Yang, and Guoying Feng. 2023. "Size Effect of Electrical and Optical Properties in Cr2+:ZnSe Nanowires" Nanomaterials 13, no. 2: 369. https://doi.org/10.3390/nano13020369
APA StyleZhang, Y., He, S., Yao, H., Zuo, H., Liu, S., Yang, C., & Feng, G. (2023). Size Effect of Electrical and Optical Properties in Cr2+:ZnSe Nanowires. Nanomaterials, 13(2), 369. https://doi.org/10.3390/nano13020369