DFT Study of Zn-Modified SnP3: A H2S Gas Sensor with Superior Sensitivity, Selectivity, and Fast Recovery Time
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Establishment and Analysis of SnP3 Monolayer
3.2. Study on Adsorption of H2S by SnP3 Monolayer
3.3. Study on Co-Adsorption of H2S with Ambient Gases
3.4. Study on Sensing of H2S by Zn–SnP3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsang, Y.F.; Wang, L.; Chua, H. Simultaneous hydrogen sulphide and ammonia removal in a biotrickling filter: Crossed inhibitory effects among selected pollutants and microbial community change. Chem. Eng. J. 2015, 281, 389–396. [Google Scholar] [CrossRef]
- Li, D.; Zu, X.; Ao, D.; Tang, Q.; Fu, Y.; Guo, Y.; Bilawal, K.; Faheem, M.B.; Li, L.; Li, S.; et al. High humidity enhanced surface acoustic wave (SAW) H2S sensors based on sol–gel CuO films. Sens. Actuators B Chem. 2019, 294, 55–61. [Google Scholar] [CrossRef]
- Yu, J.-G.; Yu, L.-Y.; Yang, H.; Liu, Q.; Chen, X.-H.; Jiang, X.-Y.; Chen, X.-Q.; Jiao, F.-P. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Sci. Total Environ. 2015, 502, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Shinde, P.V.; Saxena, M.; Singh, M.K. Chapter 11—Recent Developments in Graphene-Based Two-Dimensional Heterostructures for Sensing Applications. In Fundamentals and Sensing Applications of 2D Materials; Hywel, M., Rout, C.S., Late, D.J., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 407–436. [Google Scholar]
- Kumar, R.; Goel, N.; Hojamberdiev, M.; Kumar, M. Transition metal dichalcogenides-based flexible gas sensors. Sens. Actuators A Phys. 2020, 303, 111875. [Google Scholar] [CrossRef]
- Ju, L.; Tang, X.; Li, X.; Liu, B.; Qiao, X.; Wang, Z.; Yin, H. NO2 Physical-to-Chemical Adsorption Transition on Janus WSSe Monolayers Realized by Defect Introduction. Molecules 2023, 28, 1644. [Google Scholar] [CrossRef]
- Gullman, J.; Olofsson, O. The crystal structure of SnP3 and a note on the crystal structure of GeP3. J. Solid State Chem. 1972, 5, 441–445. [Google Scholar] [CrossRef]
- Ghosh, B.; Puri, S.; Agarwal, A.; Bhowmick, S. SnP3: A Previously Unexplored Two-Dimensional Material. J. Phys. Chem. C 2018, 122, 18185–18191. [Google Scholar] [CrossRef]
- Slassi, A.; Sorokin, P.B.; Pershin, A. Ohmic/Schottky barrier engineering in metal/SnP3 heterostructures. J. Alloys Compd. 2020, 831, 154800. [Google Scholar] [CrossRef]
- Sun, S.; Meng, F.; Wang, H.; Wang, H.; Ni, Y. Novel two-dimensional semiconductor SnP3: High stability, tunable bandgaps and high carrier mobility explored using first-principles calculations. J. Mater. Chem. A 2018, 6, 11890–11897. [Google Scholar] [CrossRef]
- Feng, L.-P.; Li, A.; Wang, P.-C.; Liu, Z.-T. Novel Two-Dimensional Semiconductor SnP3 with High Carrier Mobility, Good Light Absorption, and Strong Interlayer Quantum Confinement. J. Phys. Chem. C 2018, 122, 24359–24367. [Google Scholar] [CrossRef]
- Fan, X.; Mao, J.; Zhu, Y.; Luo, C.; Suo, L.; Gao, T.; Han, F.; Liou, S.-C.; Wang, C. Superior Stable Self-Healing SnP3 Anode for Sodium-Ion Batteries. Adv. Energy Mater. 2015, 5, 1500174. [Google Scholar] [CrossRef]
- Park, J.W.; Park, C.M. Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries. Sci. Rep. 2016, 6, 35980. [Google Scholar] [CrossRef]
- Verma, R.; Didwal, P.N.; Ki, H.S.; Cao, G.; Park, C.J. SnP3/Carbon Nanocomposite as an Anode Material for Potassium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 26976–26984. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Cai, M.; Pang, J.; Li, X.; Yang, D.; Zhang, G. Gas molecular adsorption effects on the electronic and optical properties of monolayer SnP3. Vacuum 2019, 168, 108823. [Google Scholar] [CrossRef]
- Du, J.; Jiang, G. First-principle study on monolayer and bilayer SnP3 sheets as the potential sensors for NO2, NO, and NH3 detection. Nanotechnology 2020, 31, 325504. [Google Scholar] [CrossRef]
- Ramzan, M.S.; Kuc, A.B.; Kim, H.S. Electronic fingerprint mechanism of NOx sensor based on single-material SnP3 logical junction. NPJ Comput. Mater. 2022, 8, 220. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Z. DFT study of NO adsorption on pristine graphene. RSC Adv. 2017, 7, 13082–13091. [Google Scholar] [CrossRef]
- Zeng, Y.; Lin, S.; Gu, D.; Li, X. Two-Dimensional Nanomaterials for Gas Sensing Applications: The Role of Theoretical Calculations. Nanomaterials 2018, 8, 851. [Google Scholar] [CrossRef]
- Lakshmy, S.; Sanyal, G.; Kalarikkal, N.; Chakraborty, B. Pristine and metal decorated biphenylene monolayer for enhanced adsorption of nitrobenzene: A DFT approach. Appl. Surf. Sci. 2023, 613, 155995. [Google Scholar] [CrossRef]
- Meng, R.; da Costa Pereira, L.; Locquet, J.-P.; Afanas’ev, V.; Pourtois, G.; Houssa, M. Hole-doping induced ferromagnetism in 2D materials. NPJ Comput. Mater. 2022, 8, 230. [Google Scholar] [CrossRef]
- Zhou, M.; Lu, Y.H.; Cai, Y.Q.; Zhang, C.; Feng, Y.P. Adsorption of gas molecules on transition metal embedded graphene: A search for high-performance graphene-based catalysts and gas sensors. Nanotechnology 2011, 22, 385502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, C.; Hou, S.; Yang, H.; Shao, Z.; Xu, S.; Ye, H. A DFT study of As doped WSe2: A NO2 sensing material with ultra-high selectivity in the atmospheric environment. Mater. Today Commun. 2021, 28, 102654. [Google Scholar] [CrossRef]
- Tao, L.; Dastan, D.; Wang, W.; Poldorn, P.; Meng, X.; Wu, M.; Zhao, H.; Zhang, H.; Li, L.; An, B. Metal-Decorated InN Monolayer Senses N2 against CO2. ACS Appl. Mater. Interfaces 2023, 15, 12534–12544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, W.; Feng, Y.; Ma, J. Promoted CO2 electroreduction over indium-doped SnP3: A computational study. J. Energy Chem. 2020, 48, 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Mi, H.; Wang, J.; Zeng, W. Gas-sensing mechanism of Cr doped SnP3 monolayer to SF6 partial discharge decomposition components. Appl. Surf. Sci. 2021, 546, 149084. [Google Scholar] [CrossRef]
- Wang, H.; Hu, X.; Liu, B.; Duan, D. Pd-doped SnP3 monolayer: A new 2D buddy for sensing typical dissolved gases in transformer oil. Appl. Surf. Sci. 2021, 568, 150893. [Google Scholar] [CrossRef]
- Delley, B. DFT studies: From molecules and molecular environments to surfaces and solids. Comp. Mater. Sci. 2000, 17, 122–126. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Shao, Z.; Tan, C.; Gao, C.; Cui, H.; Tang, X.; Liu, Y.; Ye, H.; Zhang, G. Strain-engineered S-HfSe2 monolayer as a promising gas sensor for detecting NH3: A first-principles study. Surf. Interfaces 2022, 34, 102317. [Google Scholar] [CrossRef]
- Zhu, X.L.; Liu, P.F.; Zhang, J.; Zhang, P.; Zhou, W.X.; Xie, G.; Wang, B.T. Monolayer SnP3: An excellent p-type thermoelectric material. Nanoscale 2019, 11, 19923–19932. [Google Scholar] [CrossRef]
- Song, H.; Zhang, X.; Yuan, P.; Hu, W.; Gao, Z. First-principles study on bilayer SnP3 as a promising thermoelectric material. Phys. Chem. Chem. Phys. 2022, 24, 29693–29699. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef]
- Tkatchenko, A.; DiStasio, R.A., Jr.; Head-Gordon, M.; Scheffler, M. Dispersion-corrected Moller-Plesset second-order perturbation theory. J. Chem. Phys. 2009, 131, 094106. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ren, M.; Song, B.; Dong, M. A DFT study of toxic gases (NH3, C2H2, NO) adsorption and detection on metal oxides (CuO, Ag2O, In2O3) modified MoTe2 monolayer. Appl. Surf. Sci. 2023, 622, 156858. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, Y.; Yang, H.; Liu, Y.; Liu, Y.; Du, J.; Ye, H.; Zhang, G. A DFT study of In doped Tl2O: A superior NO2 gas sensor with selective adsorption and distinct optical response. Appl. Surf. Sci. 2019, 494, 162–169. [Google Scholar] [CrossRef]
- Cui, H.; Jiang, J.; Gao, C.; Dai, F.; An, J.; Wen, Z.; Liu, Y. DFT study of Cu-modified and Cu-embedded WSe2 monolayers for cohesive adsorption of NO2, SO2, CO2, and H2S. Appl. Surf. Sci. 2022, 583, 152522. [Google Scholar] [CrossRef]
- Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 155125. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, G.; Wang, Z.; Yuan, J.; Tan, S.; Li, Y. Mo2C-Based Microfluidic Gas Sensor Detects SF6 Decomposition Components: A First-Principles Study. Chemosensors 2022, 10, 368. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The Electron Localization Function. Angew. Chem. Int. Ed. 1997, 36, 1808–1832. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.; Ruan, S.; Chen, X.; Li, S.; Hu, T. First-Principles Study of Electronic Properties of Substitutionally Doped Monolayer SnP3. Materials 2022, 15, 2462. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.; Houssa, M. Ferromagnetism in two-dimensional metal dibromides induced by hole-doping. Sci. Rep. 2023, 13, 11521. [Google Scholar] [CrossRef]
- Xu, L.; Gui, Y.; Li, W.; Li, Q.; Chen, X. Gas-sensing properties of Ptn-doped WSe2 to SF6 decomposition products. J. Ind. Eng. Chem. 2021, 97, 452–459. [Google Scholar] [CrossRef]
- Wei, H.; Gui, Y.; Kang, J.; Wang, W.; Tang, C. A DFT Study on the Adsorption of H2S and SO2 on Ni Doped MoS2 Monolayer. Nanomaterials 2018, 8, 646. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, M.; Cen, W.; Jiao, W. A DFT study of H2S, H2O, SO2 and CH4 Adsorption Behavior on Graphene Surface Decorated with Alkaline Earth Metals. Surf. Sci. 2022, 726, 122178. [Google Scholar] [CrossRef]
- Gao, C.; Liu, X.; Yang, H.; Zhou, Q.; Zhang, Y.; Yang, A.; Ye, H.; Liu, Y.; Zhang, L.; Zhang, G. A theoretical study of Ti-MoSe2 as a noninvasive type-1 diabetes diagnosis material for detecting acetone from exhaled breath. Vacuum 2020, 182, 109729. [Google Scholar] [CrossRef]
- Ayesh, A.I. DFT investigation of H2S and SO2 adsorption on Zn modified MoSe2. Superlattices Microstruct. 2022, 162, 107098. [Google Scholar] [CrossRef]
- Li, B.; Zhou, Q.; Peng, R.; Liao, Y.; Zeng, W. Adsorption of SF6 decomposition gases (H2S, SO2, SOF2 and SO2F2) on Sc-doped MoS2 surface: A DFT study. Appl. Surf. Sci. 2021, 549, 149271. [Google Scholar] [CrossRef]
- Kokalj, A. Formation and structure of inhibitive molecular film of imidazole on iron surface. Corros. Sci. 2013, 68, 195–203. [Google Scholar] [CrossRef]
- Jacobs, T.D.B.; Gotsmann, B.; Lantz, M.A.; Carpick, R.W. On the Application of Transition State Theory to Atomic-Scale Wear. Tribol. Lett. 2010, 39, 257–271. [Google Scholar] [CrossRef]
- Chen, R.J.; Franklin, N.R.; Kong, J.; Cao, J.; Tombler, T.W.; Zhang, Y.; Dai, H. Molecular photodesorption from single-walled carbon nanotubes. Appl. Phys. Lett. 2001, 79, 2258–2260. [Google Scholar] [CrossRef]
- Aasi, A.; Ebrahimi Bajgani, S.; Panchapakesan, B. A first-principles investigation on the adsorption of octanal and nonanal molecules with decorated monolayer WS2 as promising gas sensing platform. AIP Adv. 2023, 13, 025157. [Google Scholar] [CrossRef]
System | Ea (eV) | Q (e) | d (Å) |
---|---|---|---|
H2S/SnP3 | −0.392 | 0.024 | 2.574 (P–H) |
H2S/Cu–SnP3 | −0.749 | 0.272 | 2.336 (Cu–S) |
H2S/Ag–SnP3 | −0.595 | 0.211 | 2.601 (Ag–S) |
H2S/Zn–SnP3 | −0.639 | 0.234 | 2.520 (Zn–S) |
H2S/Cd–SnP3 | −0.402 | 0.187 | 2.877 (Cd–S) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Gao, C.; Wang, P.; Li, L.; Ye, H.; Wen, Z.; Liu, Y. DFT Study of Zn-Modified SnP3: A H2S Gas Sensor with Superior Sensitivity, Selectivity, and Fast Recovery Time. Nanomaterials 2023, 13, 2781. https://doi.org/10.3390/nano13202781
Cui H, Gao C, Wang P, Li L, Ye H, Wen Z, Liu Y. DFT Study of Zn-Modified SnP3: A H2S Gas Sensor with Superior Sensitivity, Selectivity, and Fast Recovery Time. Nanomaterials. 2023; 13(20):2781. https://doi.org/10.3390/nano13202781
Chicago/Turabian StyleCui, Hongyuan, Chenshan Gao, Pengwei Wang, Lijie Li, Huaiyu Ye, Zhongquan Wen, and Yufei Liu. 2023. "DFT Study of Zn-Modified SnP3: A H2S Gas Sensor with Superior Sensitivity, Selectivity, and Fast Recovery Time" Nanomaterials 13, no. 20: 2781. https://doi.org/10.3390/nano13202781
APA StyleCui, H., Gao, C., Wang, P., Li, L., Ye, H., Wen, Z., & Liu, Y. (2023). DFT Study of Zn-Modified SnP3: A H2S Gas Sensor with Superior Sensitivity, Selectivity, and Fast Recovery Time. Nanomaterials, 13(20), 2781. https://doi.org/10.3390/nano13202781