The Metabolomics Response of Solanum melongena L. Leaves to Various Forms of Pb
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PbXn Stock Solution
2.3. PbXn Characterization
2.4. Plant Growth and Experimental Design
2.5. ICP-MS Analysis for Pb Content in Plants
2.6. Liquid Chromatography–Mass Spectrometry (LC-MS)-Based Leaf Metabolomics
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of PbXn
3.2. Pb Absorption in Eggplant
3.3. Metabolic Response of Eggplant Leaves to PbXn
3.4. Metabolic Differences Induced by PbXn
3.4.1. Amino Acid Metabolism
3.4.2. Fatty Acids Metabolism
3.4.3. Sugars Metabolism
3.4.4. Nucleotide Metabolism
3.4.5. Organic Acids and Antioxidants
3.5. Biological Pathways Analysis
3.6. Effects of PbXn Properties on Metabolomics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Funasaka, K.; Tojo, T.; Katahira, K.; Shinya, M.; Miyazaki, T.; Kamiura, T.; Yamamoto, O.; Moriwaki, H.; Tanida, H.; Takaoka, M. Detection of Pb-Liii Edge Xanes Spectra of Urban Atmospheric Particles Combined with Simple Acid Extraction. Sci. Total Environ. 2008, 403, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.-P.; Xue, P.-Y.; Dong, J.-W.; Zhang, X.-M.; Sun, H.-X.; Geng, L.-P.; Luo, S.-X.; Zhao, J.-J.; Liu, W.-J. Contribution of Pm2.5-Pb in Atmospheric Fallout to Pb Accumulation in Chinese Cabbage Leaves Via Stomata. J. Hazard. Mater. 2021, 407, 124356. [Google Scholar] [PubMed]
- Guo, G.; Zhang, D.; Wang, Y. Characteristics of Heavy Metals in Size-Fractionated Atmospheric Particulate Matters and Associated Health Risk Assessment Based on the Respiratory Deposition. Environ. Geochem. Hlth. 2021, 43, 285–299. [Google Scholar]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and Management. Environ. Int. 2019, 125, 365–385. [Google Scholar]
- Li, L.; Zhang, Y.; Ippolito, J.A.; Xing, W.; Qiu, K.; Yang, H. Lead Smelting Effects Heavy Metal Concentrations in Soils, Wheat, and Potentially Humans. Environ. Pollut. 2020, 257, 113641. [Google Scholar]
- Liao, J.; Cai, X.; Yang, Y.; Chen, Q.; Gao, S.; Liu, G.; Sun, L.; Luo, Z.; Lei, T.; Jiang, M. Dynamic Study of the Lead (Pb) Tolerance and Accumulation Characteristics of New Dwarf Bamboo in Pb-Contaminated Soil. Chemosphere 2021, 282, 131089. [Google Scholar]
- Ye, J.; Liao, W.; Zhang, P.; Li, J.; Nabi, M.; Wang, S.; Cai, Y.; Li, F. Fe1-Xs/Biochar Combined with Thiobacillus Enhancing Lead Phytoavailability in Contaminated Soil: Preparation of Biochar, Enrichment of Thiobacillus and Their Function on Soil Lead. Environ. Pollut. 2020, 267, 115447. [Google Scholar]
- Zhang, X.; Yang, H.; Schaufelberger, M.; Li, X.; Cao, Q.; Xiao, H.; Ren, Z. Role of Flavonol Synthesized by Nucleus Fls1 in Arabidopsis Resistance to Pb Stress. J. Agric. Food Chem. 2020, 68, 9646–9653. [Google Scholar] [CrossRef]
- Hong, J.; Yang, L.; Zhang, D.; Shi, J. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science. Int. J. Mol. Sci. 2016, 17, 767. [Google Scholar] [CrossRef]
- Hall, R.D. Plant Metabolomics: From Holistic Hope, to Hype, to Hot Topic. New Phytol. 2006, 169, 453–468. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, Y.; Hu, J.; Zhou, H.; Adeleye, A.S.; Keller, A.A. 1h Nmr and Gc-Ms Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress. Environ. Sci. Technol. 2016, 50, 2000–2010. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ortiz, C.; Adeleye, A.S.; Hu, Q.; Zhou, H.; Huang, Y.; Keller, A.A. Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(Oh)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms. Environ. Sci. Technol. 2016, 50, 9697–9707. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, Y.; Adeleye, A.S.; Keller, A.A. Metabolomics Reveals Cu(Oh)2 Nanopesticide-Activated Anti-Oxidative Pathways and Decreased Beneficial Antioxidants in Spinach Leaves. Environ. Sci. Technol. 2017, 51, 10184–10194. [Google Scholar] [PubMed]
- Pidatala, V.R.; Li, K.; Sarkar, D.; Ramakrishna, W.; Datta, R. Identification of Biochemical Pathways Associated with Lead Tolerance and Detoxification in Chrysopogon zizanioides L. Nash (Vetiver) by Metabolic Profiling. Environ. Sci. Technol. 2016, 50, 2530–2537. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, X.; Pidatala, V.R.; Chang, C.P.; Cao, X. Novel Quantitative Metabolomic Approach for the Study of Stress Responses of Plant Root Metabolism. J. Proteome Res. 2014, 13, 5879–5887. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, F.-Y.; Hu, B.; Wei, M.-B.; Zhao, J.-H.; Zhang, K.; Zhang, H.-Z. Direct Evidence of Lead Contamination in Wheat Tissues from Atmospheric Deposition Based on Atmospheric Deposition Exposure Contrast Tests. Ecotox. Environ. Safe. 2019, 185, 109688. [Google Scholar]
- Tan, M.; Zhang, G.; Li, X.; Zhang, Y.; Yue, W.; Chen, J.; Wang, Y.; Li, A.; Li, Y.; Zhang, Y. Comprehensive Study of Lead Pollution in Shanghai by Multiple Techniques. Anal. Chem. 2006, 78, 8044–8050. [Google Scholar] [CrossRef]
- Grantz, D.; Garner, J.; Johnson, D. Ecological Effects of Particulate Matter. Environ. Int. 2003, 29, 213–239. [Google Scholar]
- Xiong, T.; Leveque, T.; Shahid, M.; Foucault, Y.; Mombo, S.; Dumat, C. Lead and Cadmium Phytoavailability and Human Bioaccessibility for Vegetables Exposed to Soil or Atmospheric Pollution by Process Ultrafine Particles. J. Environ. Qual. 2014, 43, 1593–1600. [Google Scholar]
- Schreck, E.; Dappe, V.; Sarret, G.; Sobanska, S.; Nowak, D.; Nowak, J.; Stefaniak, E.A.; Magnin, V.; Ranieri, V.; Dumat, C. Foliar or Root Exposures to Smelter Particles: Consequences for Lead Compartmentalization and Speciation in Plant Leaves. Sci. Total Environ. 2014, 476, 667–676. [Google Scholar]
- Liu, W.; Majumdar, S.; Li, W.; Keller, A.A.; Slaveykova, V.I. Metabolomics for Early Detection of Stress in Freshwater Alga Poterioochromonas Malhamensis Exposed to Silver Nanoparticles. Sci. Rep.-UK 2020, 10, 20563. [Google Scholar]
- Li, P.; Wang, A.; Du, W.; Mao, L.; Zhao, L. Insight into the Interaction between Fe-Based Nanomaterials and Maize (Zea mays) Plants at Metabolic Level. Sci. Total Environ. 2020, 738, 139795. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N. Procedures for Large-Scale Metabolic Profiling of Serum and Plasma Using Gas Chromatography and Liquid Chromatography Coupled to Mass Spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar]
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1h Nmr Metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Ahn, Y.G.; Kim, H.K.; Moon, B.C.; Lee, A.Y.; Hwang, G.-S. Characterization of Dandelion Species Using 1h Nmr-and Gc-Ms-Based Metabolite Profiling. Analyst 2011, 136, 4222–4231. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S. Msea: A Web-Based Tool to Identify Biologically Meaningful Patterns in Quantitative Metabolomic Data. Nucleic Acids Res. 2010, 38 (Suppl. 2), W71–W77. [Google Scholar] [CrossRef] [PubMed]
- Lowry, G.V.; Avellan, A.; Gilbertson, L.M. Opportunities and Challenges for Nanotechnology in the Agri-Tech Revolution. Nat. Nanotechnol. 2019, 14, 517–522. [Google Scholar] [CrossRef]
- Holmes, E.; Antti, H. Chemometric Contributions to the Evolution of Metabonomics: Mathematical Solutions to Characterising and Interpreting Complex Biological Nmr Spectra. Analyst 2002, 127, 1549–1557. [Google Scholar] [CrossRef]
- Ma, J.F. Role of Organic Acids in Detoxification of Aluminum in Higher Plants. Plant Cell Physiol. 2000, 41, 383–390. [Google Scholar] [CrossRef]
- Meier, S.; Alvear, M.; Borie, F.; Aguilera, P.; Ginocchio, R.; Cornejo, P. Influence of Copper on Root Exudate Patterns in Some Metallophytes and Agricultural Plants. Ecotox. Environ. Safe. 2012, 75, 8–15. [Google Scholar]
- Nigam, R.; Srivastava, S.; Prakash, S.; Srivastava, M. Cadmium Mobilisation and Plant Availability–the Impact of Organic Acids Commonly Exuded from Roots. Plant Soil 2001, 230, 107–113. [Google Scholar] [CrossRef]
- Duressa, D.; Soliman, K.; Taylor, R.; Senwo, Z. Proteomic Analysis of Soybean Roots under Aluminum Stress. Int. J. Plant Genom. 2011, 2011, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bromke, M. Amino Acid Biosynthesis Pathways in Diatoms. Metabolites 2013, 3, 294–311. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, Y.; Good, A.G. Glutamate Deamination by Glutamate Dehydrogenase Plays a Central Role in Amino Acid Catabolism in Plants. Plant Signal. Behav. 2008, 3, 842–843. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.S.; Dietz, K.-J. The Significance of Amino Acids and Amino Acid-Derived Molecules in Plant Responses and Adaptation to Heavy Metal Stress. J. Exp. Bot. 2006, 57, 711–726. [Google Scholar]
- Tzin, V.; Galili, G. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis Thaliana. In Arabidopsis Book; American Society of Plant Biologists: Rockville, MD, USA, 2010; Volume 8. [Google Scholar]
- Saradhi, P.P. Proline Accumulation under Heavy Metal Stress. J. Plant Physiol. 1991, 138, 554–558. [Google Scholar]
- Binder, S.; Knill, T.; Schuster, J. Branched-Chain Amino Acid Metabolism in Higher Plants. J. Plant Physiol. 2007, 129, 68–78. [Google Scholar] [CrossRef]
- Joy, K. Ammonia, Glutamine, and Asparagine: A Carbon–Nitrogen Interface. Can. J. Bot. 1988, 66, 2103–2109. [Google Scholar] [CrossRef]
- Forde, B.G.; Lea, P.J. Glutamate in Plants: Metabolism, Regulation, and Signalling. J. Exp. Bot. 2007, 58, 2339–2358. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Ricer, R. Brs Biochemistry, Molecular Biology, and Genetics; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2019. [Google Scholar]
- Shelp, B.J.; Bown, A.W.; McLean, M.D. Metabolism and Functions of Gamma-Aminobutyric Acid. Trends Plant Sci. 1999, 4, 446–452. [Google Scholar] [CrossRef]
- Hall, J.á. Cellular Mechanisms for Heavy Metal Detoxification and Tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, J.; Zhao, C.; Zhou, H.; Li, Y.; Zhang, J.; Li, L.; Hu, C.; Li, W.; Peng, X. A Metabolomics Study Delineating Geographical Location-Associated Primary Metabolic Changes in the Leaves of Growing Tobacco Plants by Gc-Ms and Ce-Ms. Sci. Rep.-UK 2015, 5, 16346. [Google Scholar] [CrossRef]
- Stasolla, C.; Katahira, R.; Thorpe, T.A.; Ashihara, H. Purine and Pyrimidine Nucleotide Metabolism in Higher Plants. J. Plant Physiol. 2003, 160, 1271–1295. [Google Scholar] [PubMed]
- Moffatt, B.A.; Ashihara, H. Purine and Pyrimidine Nucleotide Synthesis and Metabolism. In Arabidopsis Book; American Society of Plant Biologists: Rockville, MD, USA, 2002; Volume 1. [Google Scholar]
- Zhao, L.; Hu, Q.; Huang, Y.; Fulton, A.N.; Hannah-Bick, C.; Adeleye, A.S.; Keller, A.A. Activation of Antioxidant and Detoxification Gene Expression in Cucumber Plants Exposed to a Cu(Oh)2 Nanopesticide. Environ. Sci.-Nano 2017, 4, 1750–1760. [Google Scholar]
- Xie, Y.; Hu, L.; Du, Z.; Sun, X.; Amombo, E.; Fan, J.; Fu, J. Effects of Cadmium Exposure on Growth and Metabolic Profile of Bermudagrass [Cynodon dactylon (L.) Pers]. PLoS ONE 2014, 9, e115279. [Google Scholar]
- Akram, M. Citric Acid Cycle and Role of Its Intermediates in Metabolism. Cell Biochem. Biophys. 2014, 68, 475–478. [Google Scholar] [CrossRef]
- Anderson, N.M.; Mucka, P.; Kern, J.G.; Feng, H. The Emerging Role and Targetability of the Tca Cycle in Cancer Metabolism. Protein Cell 2018, 9, 216–237. [Google Scholar]
- Zhao, L.; Huang, Y.; Keller, A.A. Comparative Metabolic Response between Cucumber (Cucumis sativus) and Corn (Zea mays) to a Cu(Oh)2 Nanopesticide. J. Agric. Food Chem. 2017, 66, 6628–6636. [Google Scholar] [CrossRef]
- Berglund, T.; Lindström, A.; Aghelpasand, H.; Stattin, E.; Ohlsson, A.B. Protection of Spruce Seedlings against Pine Weevil Attacks by Treatment of Seeds or Seedlings with Nicotinamide, Nicotinic Acid and Jasmonic Acid. Forestry 2016, 89, 127–135. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Q.; Huang, Y.; Keller, A.A. Response at Genetic, Metabolic, and Physiological Levels of Maize (Zea mays) Exposed to a Cu(Oh)2 Nanopesticide. ACS Sustain. Chem. Eng. 2017, 5, 8294–8301. [Google Scholar] [CrossRef]
- Taylor, N.L.; Heazlewood, J.L.; Day, D.A.; Millar, A.H. Lipoic Acid-Dependent Oxidative Catabolism of A-Keto Acids in Mitochondria Provides Evidence for Branched-Chain Amino Acid Catabolism in Arabidopsis. Plant Physiol. 2004, 134, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Muller, B.; Pantin, F.; Génard, M.; Turc, O.; Freixes, S.; Piques, M.; Gibon, Y. Water Deficits Uncouple Growth from Photosynthesis, Increase C Content, and Modify the Relationships between C and Growth in Sink Organs. J. Exp. Bot. 2011, 62, 1715–1729. [Google Scholar] [PubMed]
- Van den Ende, W.; Valluru, R. Sucrose, Sucrosyl Oligosaccharides, and Oxidative Stress: Scavenging and Salvaging? J. Exp. Bot. 2009, 60, 9–18. [Google Scholar] [CrossRef]
- Galili, G.; Tang, G.; Zhu, X.; Gakiere, B. Lysine Catabolism: A Stress and Development Super-Regulated Metabolic Pathway. Curr. Opin. Plant Biol. 2001, 4, 261–266. [Google Scholar] [PubMed]
- Zhao, L.; Zhang, H.; White, J.C.; Chen, X.; Li, H.; Qu, X.; Ji, R. Metabolomics Reveals That Engineered Nanomaterial Exposure in Soil Alters Both Soil Rhizosphere Metabolite Profiles and Maize Metabolic Pathways. Environ. Sci.-Nano 2019, 6, 1716–1727. [Google Scholar]
- Huang, Y.; Adeleye, A.S.; Zhao, L.; Minakova, A.S.; Anumol, T.; Keller, A.A. Antioxidant Response of Cucumber (Cucumis sativus) Exposed to Nano Copper Pesticide: Quantitative Determination Via Lc-Ms/Ms. Food Chem. 2019, 270, 47–52. [Google Scholar] [CrossRef]
- Zhang, H.; Du, W.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L.; White, J.C.; Keller, A.; Guo, H.; Ji, R.; Zhao, L. Metabolomics Reveals How Cucumber (Cucumis sativus) Reprograms Metabolites to Cope with Silver Ions and Silver Nanoparticle-Induced Oxidative Stress. Environ. Sci. Technol. 2018, 52, 8016–8026. [Google Scholar] [CrossRef]
- Schreck, E.; Foucault, Y.; Sarret, G.; Sobanska, S.; Cecillon, L.; Castrec-Rouelle, M.; Uzu, G.; Dumat, C. Metal and Metalloid Foliar Uptake by Various Plant Species Exposed to Atmospheric Industrial Fallout: Mechanisms Involved for Lead. Sci. Total Environ. 2012, 427–428, 253–262. [Google Scholar]
- Liu, Y.; Peng, B.; Sohrabi, S.; Liu, Y. The Configuration of Copolymer Ligands on Nanoparticles Affects Adhesion and Uptake. Langmuir 2016, 32, 10136–10143. [Google Scholar] [CrossRef]
- Astolfi, S.; Zuchi, S.; Passera, C. Effect of Cadmium on H+ Atpase Activity of Plasma Membrane Vesicles Isolated from Roots of Different S-Supplied Maize (Zea mays L.) Plants. Plant Sci. 2005, 169, 361–368. [Google Scholar] [CrossRef]
- Ren, G.; Hu, H. Effects of Sulfur on Toxicity and Bioavailability of Cu for Castor (Ricinus communis L.) in Cu-Contaminated Soil. Environ. Sci. Pollut. R. 2017, 24, 27476–27483. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhao, B.; Zhang, X.; Wu, F.; Zhao, Q. The Metabolomics Response of Solanum melongena L. Leaves to Various Forms of Pb. Nanomaterials 2023, 13, 2911. https://doi.org/10.3390/nano13222911
Zhang S, Zhao B, Zhang X, Wu F, Zhao Q. The Metabolomics Response of Solanum melongena L. Leaves to Various Forms of Pb. Nanomaterials. 2023; 13(22):2911. https://doi.org/10.3390/nano13222911
Chicago/Turabian StyleZhang, Siyu, Bing Zhao, Xuejiao Zhang, Fengchang Wu, and Qing Zhao. 2023. "The Metabolomics Response of Solanum melongena L. Leaves to Various Forms of Pb" Nanomaterials 13, no. 22: 2911. https://doi.org/10.3390/nano13222911
APA StyleZhang, S., Zhao, B., Zhang, X., Wu, F., & Zhao, Q. (2023). The Metabolomics Response of Solanum melongena L. Leaves to Various Forms of Pb. Nanomaterials, 13(22), 2911. https://doi.org/10.3390/nano13222911