A Nanograss Boron and Nitrogen Co-Doped Diamond Sensor Produced via High-Temperature Annealing for the Detection of Cadmium Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the NGBND Electrode
2.3. Apparatus
2.4. Electrochemical Measurements
2.5. COMSOL Multiphysics Simulations
3. Results
3.1. Morphology and Structure of NGBND Films
3.2. Electrochemical Performance
3.3. Electrochemical Characterization for Detecting Cd2+
3.4. Simulations of Current Density near the NGBND Tip
3.5. Reproducibility and Selectivity of NGBND
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sohrabi, H.; Khataee, A.; Ghasemzadeh, S.; Majidi, M.R.; Orooji, Y. Layer double hydroxides (LDHs)-based electrochemical and optical sensing assessments for quantification and identification of heavy metals in water and environment samples: A review of status and prospects. Trends Environ. Anal. Chem. 2021, 31, e00139. [Google Scholar] [CrossRef]
- Yi, Y.; Zhao, Y.; Zhang, Z.; Wu, Y.; Zhu, G. Recent developments in electrochemical detection of cadmium. Trends Environ. Anal. Chem. 2022, 33, e00152. [Google Scholar] [CrossRef]
- Kim, H.N.; Ren, W.X.; Kim, J.S.; Yoon, J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 2012, 41, 3210–3244. [Google Scholar] [CrossRef]
- Nordberg, E.G.; Herber, R.; Alessio, L. Cadmium in the human environment: Closing remarks. Cadmium Hum. Environ. Toxic. Carcinog. 1992, 118, 459. [Google Scholar]
- Li, W.; Zhang, X.; Hu, X.; Shi, Y.; Li, Z.; Huang, X.; Zhang, W.; Zhang, D.; Zou, X.; Shi, J. A smartphone-integrated ratiometric fluorescence sensor for visual detection of cadmium ions. J. Hazard. Mater. 2021, 408, 124872. [Google Scholar] [CrossRef]
- Liu, X.; Yao, Y.; Ying, Y.; Ping, J. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. TrAC Trends Anal. Chem. 2019, 115, 187–202. [Google Scholar] [CrossRef]
- World Health Organization. Potable Reuse: Guidance for Producing Safe Drinking-Water; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Saleh, T.A.; Mustaqeem, M.; Khaled, M. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100617. [Google Scholar] [CrossRef]
- Eftekhari, M.; Gheibi, M.; Akrami, M.; Iranzad, F. Solid-phase extraction of ultra-trace levels of lead using tannic acid-coated graphene oxide as an efficient adsorbent followed by electrothermal atomic absorption spectrometry; response surface methodology–central composite design. New J. Chem. 2018, 42, 1159–1168. [Google Scholar] [CrossRef]
- Krata, A.A.; Wojciechowski, M.; Kalabun, M.; Bulska, E. Reference measurements of cadmium and lead contents in candidates for new environmental certified materials by isotope dilution inductively coupled plasma mass spectrometry. Microchem. J. 2018, 142, 36–42. [Google Scholar] [CrossRef]
- Safari, M.; Yamini, Y.; Masoomi, M.Y.; Morsali, A.; Mani-Varnosfaderani, A. Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES. Microchim. Acta 2017, 184, 1555–1564. [Google Scholar] [CrossRef]
- Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC Trends Anal. Chem. 2018, 105, 37–51. [Google Scholar] [CrossRef]
- Aragay, G.; Pons, J.; Merkoçi, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011, 111, 3433–3458. [Google Scholar] [CrossRef]
- Barhoum, A.; El-Maghrabi, H.H.; Nada, A.A.; Sayegh, S.; Roualdes, S.; Renard, A.; Iatsunskyi, I.; Coy, E.; Bechelany, M. Simultaneous hydrogen and oxygen evolution reactions using free-standing nitrogen-doped-carbon–Co/CoOx nanofiber electrodes decorated with palladium nanoparticles. J. Mater. Chem. A 2021, 9, 17724–17739. [Google Scholar] [CrossRef]
- Kempahanumakkagari, S.; Deep, A.; Kim, K.-H.; Kailasa, S.K.; Yoon, H.-O. Nanomaterial-based electrochemical sensors for arsenic-A review. Biosens. Bioelectron. 2017, 95, 106–116. [Google Scholar] [CrossRef]
- Yang, N.; Yu, S.; Macpherson, J.V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G.M.; Jiang, X. Conductive diamond: Synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 2019, 48, 157–204. [Google Scholar] [CrossRef]
- Nasa, K.; Kurnia, I.; Hartati, Y.W.; Einaga, Y. Low-interference norepinephrine signal on dopamine detection using nafion-coated boron doped diamond electrodes. Biosens. Bioelectron. 2023, 220, 114892. [Google Scholar]
- Chrouda, A.; Ayed, D.; Elamin, M.B.; Ali, S.M.A.; Alhaidari, L.M.; Bessueille, F.; Jaffrezic-Renault, N. Design of a Boron-Doped Diamond Microcell Grafted with HRP for the Sensitive and Selective Detection of Ochratoxin A. Chemosensors 2023, 11, 176. [Google Scholar] [CrossRef]
- Li, E.Y.; Pacheco, E.; Zhou, A.F.; Feng, P.X. Nanostructured Diamond Composites for Multifunctional Sensing Applications. Chemosensors 2022, 10, 488. [Google Scholar] [CrossRef]
- Takemura, K.; Iwasaki, W.; Morita, N.; Ohmagari, S. High-density and monodisperse electrochemical gold nanoparticle synthesis utilizing the properties of boron-doped diamond electrodes. Nanomaterials 2022, 12, 1741. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Diamond-based electrodes for detection of metal ions and anions. Nanomaterials 2021, 12, 64. [Google Scholar] [CrossRef]
- Zhang, Y.; Rhee, K.Y.; Hui, D.; Park, S.-J. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Compos. Part B Eng. 2018, 143, 19–27. [Google Scholar] [CrossRef]
- Amaral, M.; Dias, A.G.; Gomes, P.S.; Lopes, M.A.; Silva, R.F.; Santos, J.D.; Fernandes, M.H. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures. J. Biomed. Mater. Res. Part A 2008, 87A, 91–99. [Google Scholar] [CrossRef]
- Ramesham, R.; Rose, M.F. Corrosion studies of CVD diamond coated molybdenum, evaluation of equivalent circuit and the effect of pinholes in diamond film on cyclic voltammetric behavior. Corros. Sci. 1997, 39, 2019–2033. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Liu, Z.-G.; Huang, X.-J. Nanostructured metal oxides/hydroxides-based electrochemical sensor for monitoring environmental micropollutants. Trends Environ. Anal. Chem. 2014, 3–4, 28–35. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H. Understanding signal amplification strategies of nanostructured electrochemical sensors for environmental pollutants. Curr. Opin. Electrochem. 2019, 17, 56–64. [Google Scholar] [CrossRef]
- Petrák, V.; Vlčková Živcová, Z.; Krýsová, H.; Frank, O.; Zukal, A.; Klimša, L.; Kopeček, J.; Taylor, A.; Kavan, L.; Mortet, V. Fabrication of porous boron-doped diamond on SiO2 fiber templates. Carbon 2017, 114, 457–464. [Google Scholar] [CrossRef]
- Silva, L.R.; Carvalho, J.H.; Stefano, J.S.; Oliveira, G.G.; Prakash, J.; Janegitz, B.C. Electrochemical sensors and biosensors based on nanodiamonds: A review. Mater. Today Commun. 2023, 35, 106142. [Google Scholar] [CrossRef]
- Kaçar, C.; Erden, P.E. An amperometric biosensor based on poly (l-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase–modified glassy carbon electrode for the determination of l-ascorbic acid. Anal. Bioanal. Chem. 2020, 412, 5315–5327. [Google Scholar] [CrossRef]
- Jiang, L.; Santiago, I.; Foord, J. A comparative study of fouling-free nanodiamond and nanocarbon electrochemical sensors for sensitive bisphenol A detection. Carbon 2021, 174, 390–395. [Google Scholar] [CrossRef]
- Deshpande, B.; Agrawal, P.; Yenkie, M.; Dhoble, S. Prospective of nanotechnology in degradation of waste water: A new challenges. Nano-Struct. Nano-Objects 2020, 22, 100442. [Google Scholar] [CrossRef]
- Chauhan, S.; Jain, N.; Nagaich, U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J. Pharm. Anal. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Uetsuka, H.; Osawa, E.; Nebel, C.E. Vertically Aligned Nanowires from Boron-Doped Diamond. Nano Lett. 2008, 8, 3572–3576. [Google Scholar] [CrossRef] [PubMed]
- Mehedi, H.-a.; Arnault, J.-C.; Eon, D.; Hébert, C.; Carole, D.; Omnes, F.; Gheeraert, E. Etching mechanism of diamond by Ni nanoparticles for fabrication of nanopores. Carbon 2013, 59, 448–456. [Google Scholar] [CrossRef]
- Kondo, T.; Kodama, Y.; Ikezoe, S.; Yajima, K.; Aikawa, T.; Yuasa, M. Porous boron-doped diamond electrodes fabricated via two-step thermal treatment. Carbon 2014, 77, 783–789. [Google Scholar] [CrossRef]
- Copeland, T.R.; Skogerboe, R.K. Anodic stripping voltammetry. Anal. Chem. 1974, 46, 1257A–1268A. [Google Scholar] [CrossRef]
- Mareš, J.J.; Nesládek, M.; Hubík, P.; Kindl, D.; Krištofik, J. On unconventional superconductivity in boron-doped diamond. Diam. Relat. Mater. 2007, 16, 1–5. [Google Scholar] [CrossRef]
- Li, S.; Zeng, B.; Feng, Z.; Liu, Y.; Yang, W.; Zhang, L. Effects of heat treatment on the microstructure of amorphous boron carbide coating deposited on graphite substrates by chemical vapor deposition. Thin Solid Film. 2010, 519, 251–258. [Google Scholar] [CrossRef]
- Ferro, S.; Dal Colle, M.; De Battisti, A. Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes. Carbon 2005, 43, 1191–1203. [Google Scholar] [CrossRef]
- Brocenschi, R.F.; Hammer, P.; Deslouis, C.; Rocha-Filho, R.C. Assessments of the effect of increasingly severe cathodic pretreatments on the electrochemical activity of polycrystalline boron-doped diamond electrodes. Anal. Chem. 2016, 88, 5363–5368. [Google Scholar] [CrossRef]
- Girard, H.; Simon, N.; Ballutaud, D.; Herlem, M.; Etcheberry, A. Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes. Diam. Relat. Mater. 2007, 16, 316–325. [Google Scholar] [CrossRef]
- Tian, T.; He, Y.; Ge, Y.; Song, G. One-pot synthesis of boron and nitrogen co-doped carbon dots as the fluorescence probe for dopamine based on the redox reaction between Cr (VI) and dopamine. Sens. Actuators B Chem. 2017, 240, 1265–1271. [Google Scholar] [CrossRef]
- Zhang, J.; Su, D.S.; Blume, R.; Schlögl, R.; Wang, R.; Yang, X.; Gajović, A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angew. Chem. 2010, 122, 8822–8826. [Google Scholar] [CrossRef]
- Dietrich, P.M.; Glamsch, S.; Ehlert, C.; Lippitz, A.; Kulak, N.; Unger, W.E. Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon. Appl. Surf. Sci. 2016, 363, 406–411. [Google Scholar] [CrossRef]
- Yuan, X.; Gao, N.; Gao, X.; Qiu, D.; Xu, R.; Sun, Z.; Jiang, Z.; Liu, J.; Li, H. Nanopyramid boron-doped diamond electrode realizing nanomolar detection limit of 4-nonylphenol. Sens. Actuators B Chem. 2019, 281, 830–836. [Google Scholar] [CrossRef]
- Zhuang, H.; Wang, C.; Huang, N.; Jiang, X. Cubic SiC for trace heavy metal ion analysis. Electrochem. Commun. 2014, 41, 5–7. [Google Scholar] [CrossRef]
- Hutton, L.A.; Newton, M.E.; Unwin, P.R.; Macpherson, J.V. Factors controlling stripping voltammetry of lead at polycrystalline boron doped diamond electrodes: New insights from high-resolution microscopy. Anal. Chem. 2011, 83, 735–745. [Google Scholar] [CrossRef]
- Ferreira, R.; Chaar, J.; Baldan, M.; Braga, N. Simultaneous voltammetric detection of Fe3+, Cu2+, Zn2+, Pb2+, Cd2+ in fuel ethanol using anodic stripping voltammetry and boron-doped diamond electrodes. Fuel 2021, 291, 120104. [Google Scholar] [CrossRef]
- Pei, J.; Yu, X.; Zhang, C.; Liu, X. Development of a boron-doped diamond electrode for the simultaneous detection of Cd2+ and Pb2+ in water. Int. J. Electrochem. Sci. 2019, 14, 3393–3407. [Google Scholar] [CrossRef]
- Toghill, K.E.; Xiao, L.; Wildgoose, G.G.; Compton, R.G. Electroanalytical determination of cadmium (II) and lead (II) using an antimony nanoparticle modified boron-doped diamond electrode. Electroanalysis 2009, 21, 1113–1118. [Google Scholar] [CrossRef]
- Deshmukh, S.; Sankaran, K.J.; Korneychuk, S.; Verbeeck, J.; Mclaughlin, J.; Haenen, K.; Roy, S.S. Nanostructured nitrogen doped diamond for the detection of toxic metal ions. Electrochim. Acta 2018, 283, 1871–1878. [Google Scholar] [CrossRef]
- Toghill, K.E.; Wildgoose, G.G.; Moshar, A.; Mulcahy, C.; Compton, R.G. The fabrication and characterization of a bismuth nanoparticle modified boron doped diamond electrode and its application to the simultaneous determination of cadmium (II) and lead (II). Electroanalysis 2008, 20, 1731–1737. [Google Scholar] [CrossRef]
- Zhou, X.; Gai, Z.; Wang, Y.; Liu, S.; Zhang, X.; Guo, F.; Zhang, M.; Zhang, L.; Jiang, X. High performance ratiometric detection towards trace Cd (II) and Pb (II) utilizing in-situ bismuth modified nitrogen rich porous carbon/boron doped diamond composite electrode. J. Environ. Chem. Eng. 2023, 11, 109448. [Google Scholar] [CrossRef]
- Zhai, Z.; Huang, N.; Zhuang, H.; Liu, L.; Yang, B.; Wang, C.; Gai, Z.; Guo, F.; Li, Z.; Jiang, X. A diamond/graphite nanoplatelets electrode for anodic stripping voltammetric trace determination of Zn (II), Cd (II), Pb (II) and Cu (II). Appl. Surf. Sci. 2018, 457, 1192–1201. [Google Scholar] [CrossRef]
- Zhou, M.; Zhai, Z.; Liu, L.; Zhang, C.; Yuan, Z.; Lu, Z.; Chen, B.; Shi, D.; Yang, B.; Wei, Q. Controllable synthesized diamond/CNWs film as a novel nanocarbon electrode with wide potential window and enhanced S/B ratio for electrochemical sensing. Appl. Surf. Sci. 2021, 551, 149418. [Google Scholar] [CrossRef]
- Pei, J.; Yu, X.; Wei, S.; Boukherroub, R.; Zhang, Y. Double-side effect of B/C ratio on BDD electrode detection for heavy metal ion in water. Sci. Total Environ. 2021, 771, 145430. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wang, Q.; Gao, N.; Li, H. Electrochemical detection of clenbuterol with gold-nanoparticles-modified porous boron-doped diamond electrode. Microchem. J. 2020, 157, 104911. [Google Scholar] [CrossRef]
Electrodes | Technique | Linear Range (μg L−1) | Detection Limit (μg L−1) | Relative Standard Deviation | Ref. |
---|---|---|---|---|---|
BDD 1 | SWASV 3 | 2–40 | 1.6 | — | [48] |
hydrogen-terminated BDD | SWASV | 5.6–448 | 3.38 | 1.6% | [49] |
Sb/BDD | LSASV 4 | 100–500 | 38.1 | — | [50] |
NDD 2 | SWASV | 1.1–123.2 | 1.1 | — | [51] |
Bi/BDD | SWASV | 20–200 | 2.3 | — | [52] |
Bi/nitrogen carbon/BDD | DPASV 5 | 1–10 | 0.51 | 3.4% | [53] |
graphite/diamond | DPASV | 5–1000 | 0.47 | 14.4% | [54] |
diamond/carbon nanowalls | DPASV | 9.97–996.8 | 9.97 | — | [55] |
NGBND | DPASV | 1–100 | 0.28 | 3.1% | This work |
Lake Water | Added Cd2+ (μg L−1) | Detected (μg L−1) | Recovery (%) | Relative Standard Deviation (%) |
---|---|---|---|---|
1 | 20 | 19.6 | 97 | 3.8 |
2 | 40 | 41.5 | 104 | 3.2 |
3 | 60 | 61.1 | 102 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Liang, Y.; Yang, M.; Cheng, S.; Gao, N.; Zhu, Y.; Li, H. A Nanograss Boron and Nitrogen Co-Doped Diamond Sensor Produced via High-Temperature Annealing for the Detection of Cadmium Ions. Nanomaterials 2023, 13, 2955. https://doi.org/10.3390/nano13222955
Yuan X, Liang Y, Yang M, Cheng S, Gao N, Zhu Y, Li H. A Nanograss Boron and Nitrogen Co-Doped Diamond Sensor Produced via High-Temperature Annealing for the Detection of Cadmium Ions. Nanomaterials. 2023; 13(22):2955. https://doi.org/10.3390/nano13222955
Chicago/Turabian StyleYuan, Xiaoxi, Yaqi Liang, Mingchao Yang, Shaoheng Cheng, Nan Gao, Yongfu Zhu, and Hongdong Li. 2023. "A Nanograss Boron and Nitrogen Co-Doped Diamond Sensor Produced via High-Temperature Annealing for the Detection of Cadmium Ions" Nanomaterials 13, no. 22: 2955. https://doi.org/10.3390/nano13222955
APA StyleYuan, X., Liang, Y., Yang, M., Cheng, S., Gao, N., Zhu, Y., & Li, H. (2023). A Nanograss Boron and Nitrogen Co-Doped Diamond Sensor Produced via High-Temperature Annealing for the Detection of Cadmium Ions. Nanomaterials, 13(22), 2955. https://doi.org/10.3390/nano13222955