Multi-Wavelength Selective and Broadband Near-Infrared Plasmonic Switches in Anisotropic Plasmonic Metasurfaces
Abstract
:1. Introduction
2. The Model of the Hybrid Metasurface
3. Plasmonic Double Fano Resonances in a Hybrid Metasurface
4. Dual-Wavelength Plasmonic Switches via Double Fano Resonances
5. Triple-Wavelength Plasmonic Switches Empowered by Mirror Asymmetries
6. Multi-Wavelength Plasmonic Switches Endowed by Rotational Asymmetries
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, X.G.; Tsai, D.P.; Gu, M.; Hong, M.H. Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 2018, 10, 757–842. [Google Scholar] [CrossRef]
- Qiu, C.W.; Zhang, T.; Hu, G.; Kivshar, Y. Quo vadis, metasurfaces? Nano Lett. 2021, 21, 5461–5474. [Google Scholar] [CrossRef] [PubMed]
- Neshev, D.; Aharonovich, I. Optical metasurfaces: New generation building blocks for multi-functional optics. Light Sci. Appl. 2018, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.X.; Zhang, J.; Cheng, Q.; Cui, T.J. Polarization modulation for wireless communications based on metasurfaces. Adv. Funct. Mater. 2021, 31, 2103379. [Google Scholar] [CrossRef]
- Dorrah, A.H.; Capasso, F. Tunable structured light with flat optics. Science 2022, 376, eabi6860. [Google Scholar] [CrossRef]
- Du, K.; Barkaoui, H.; Zhang, X.D.; Jin, L.M.; Song, Q.H.; Xiao, S.M. Optical metasurfaces towards multifunctionality and tunability. Nanophotonics 2022, 11, 1761–1781. [Google Scholar] [CrossRef]
- Zhao, Y.; Alù, A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B 2011, 84, 205428. [Google Scholar] [CrossRef]
- Glybovski, S.B.; Tretyakov, S.A.; Belov, P.A.; Kivshar, Y.S.; Simovski, C.R. Metasurfaces: From microwaves to visible. Phys. Rep. 2016, 634, 1–72. [Google Scholar] [CrossRef]
- Chen, H.T.; Taylor, A.J.; Yu, N. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef]
- Rubin, N.A.; Shi, Z.J.; Capasso, F. Polarization in diffractive optics and metasurfaces. Adv. Opt. Photonics 2021, 13, 836–970. [Google Scholar] [CrossRef]
- Yu, P.; Li, J.; Liu, N. Electrically tunable optical metasurfaces for dynamic polarization conversion. Nano Lett. 2021, 21, 6690–6695. [Google Scholar] [CrossRef] [PubMed]
- Gerislioglu, B.; Dong, L.; Ahmadivand, A.; Hu, H.; Nordlander, P.; Halas, N.J. Monolithic metal dimer-on-film structure: New plasmonic properties introduced by the underlying metal. Nano Lett. 2020, 20, 2087–2093. [Google Scholar] [CrossRef]
- Ni, X.; Ishii, S.A.; Kildishev, V.; Shalaev, V.M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl. 2013, 2, e72. [Google Scholar] [CrossRef]
- Aieta, F.; Genevet, P.; Kats, M.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso, F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012, 12, 4932–4936. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, N.; Barnes, W.; Hooper, I. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 2014, 8, 889–898. [Google Scholar] [CrossRef]
- Cao, W.; Yang, X.D.; Gao, J. Broadband polarization conversion with anisotropic plasmonic metasurfaces. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Verre, R.; Maccaferri, N.; Fleischer, K.; Svedendahl, M.; Länk, N.O.; Dmitriev, A.; Vavassori, P.; Shvets, I.V.; Käll, M. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. Nanoscale 2016, 8, 10576–10581. [Google Scholar] [CrossRef]
- Hassanfiroozi, A.; Huang, P.S.; Huang, S.H.; Lin, K.I.; Lin, Y.T.; Chien, C.F.; Shi, Y.Z.; Lee, W.J.; Wu, P.C. A toroidal-Fano-resonant metasurface with optimal cross-polarization efficiency and switchable nonlinearity in the near-infrared. Adv. Opt. Mater. 2021, 9, 2101007. [Google Scholar] [CrossRef]
- Giordano, M.C.; Longhi, S.; Barelli, M.; Mazzanti, A.; Buatier de Mongeot, F.; Della Valle, G. Plasmon hybridization engineering in self-organized anisotropic metasurfaces. Nano Res. 2018, 11, 3943–3956. [Google Scholar] [CrossRef]
- Liang, Y.; Koshelev, K.; Zhang, F.C.; Lin, H.; Lin, S.R.; Wu, J.Y.; Jia, B.H.; Kivshar, Y. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Lin, S.R.; Wu, J.Y.; Li, W.B.; Meng, F.; Yang, Y.Y.; Huang, X.D.; Jia, B.H.; Kivshar, Y. Hybrid anisotropic plasmonic metasurfaces with multiple resonances of focused light beams. Nano Lett. 2021, 21, 8917–8923. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Yue, S.; Xiao, J.; Gong, Q. Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett. 2012, 12, 2494. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef]
- Chen, J.J.; Gan, F.Y.; Wang, Y.J.; Li, G.Z. Plasmonic sensing and modulation based on Fano resonances. Adv. Opt. Mater. 2018, 6, 1701152. [Google Scholar] [CrossRef]
- Lio, G.E.; Ferraro, A.; Kowerdziej, R.; Govorov, A.O.; Wang, Z.; Caputo, R. Engineering Fano-resonant hybrid metastructures with ultra-high sensing performances. Adv. Opt. Mater. 2023, 11, 2203123. [Google Scholar] [CrossRef]
- Lim, W.X.; Manjappa, M.; Pitchappa, P.; Singh, R. Shaping high-Q planar Fano resonant metamaterials toward futuristic technologies. Adv. Opt. Mater. 2018, 6, 1800502. [Google Scholar] [CrossRef]
- Chang, W.S.; Lassiter, J.B.; Swanglap, P.; Sobhani, H.; Khatua, S.; Nordlander, P.; Halas, N.J.; Link, S. A plasmonic Fano switch. Nano Lett. 2012, 12, 4977–4982. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Luo, X.Q.; Luo, Y.L.; Zhu, W.H.; Chen, Z.Y.; Liu, W.M.; Wang, X.L. Near-infrared dual-wavelength plasmonic switching and digital metasurface unveiled by plasmonic Fano resonance. Nanophotonics 2021, 10, 947–957. [Google Scholar] [CrossRef]
- Chu, H.S.; Gan, C.H. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl. Phys. Lett. 2013, 102, 231107. [Google Scholar] [CrossRef]
- Piao, X.; Yu, S.; Park, N. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt. Express 2012, 20, 18994. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, X.; Huang, Y.; Yang, H.; Gong, Q. Fast and low-power all-optical tunable Fano resonance in plasmonic microstructures. Adv. Opt. Mater. 2013, 1, 61–67. [Google Scholar] [CrossRef]
- Hayashi, S.; Nesterenko, D.V.; Rahmouni, A.; Sekkat, Z. Polarization effects in light-tunable Fano resonance in metal-dielectric multilayer structures. Phys. Rev. B 2017, 95, 165402. [Google Scholar] [CrossRef]
- Kamari, M.; Hayati, M.; Khosravi, S. Design of dual-wideband bandstop MIM plasmonic filter using multi-circular ring resonators. Opt. Mater. 2021, 122, 111678. [Google Scholar] [CrossRef]
- Azzam, S.I.; Shalaev, V.M.; Boltasseva, A.; Kildishev, A.V. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett. 2018, 121, 253901. [Google Scholar] [CrossRef]
- Lovera, A.; Gallinet, B.; Nordlander, P.; Martin, O.J.F. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 2013, 7, 4527–4536. [Google Scholar] [CrossRef] [PubMed]
- Limonov, M.F. Fano resonance for applications. Adv. Opt. Photonics 2021, 13, 703–771. [Google Scholar] [CrossRef]
- Khan, A.D.; Khan, S.D.; Khan, R.; Ahmad, N.; Ali, A.; Khalil, A.; Khan, F.A. Generation of multiple Fano resonances in plasmonic split nanoring dimer. Plasmonics 2014, 9, 1091–1102. [Google Scholar] [CrossRef]
- Liu, S.D.; Yang, Z.; Liu, R.P.; Li, X.Y. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings. ACS Nano 2012, 6, 6260–6271. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, L. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J. 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Chen, L.; Xu, N.N.; Singh, L.; Cui, T.J.; Singh, R.; Zhu, Y.M.; Zhang, W.L. Defect-induced Fano resonances in corrugated plasmonic metamaterials. Adv. Opt. Mater. 2017, 5, 1600960. [Google Scholar] [CrossRef]
- Liu, S.D.; Yang, Y.B.; Chen, Z.H.; Wang, W.J.; Fei, H.M.; Zhang, M.J.; Wang, Y.C. Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry. J. Phys. Chem. C 2013, 117, 14218–14228. [Google Scholar] [CrossRef]
- Liu, S.D.; Zhang, M.J.; Wang, W.J.; Wang, Y.C. Tuning multiple Fano resonances in plasmonic pentamer clusters. Appl. Phys. Lett. 2013, 102, 133105. [Google Scholar] [CrossRef]
- Dregely, D.; Hentschel, M.; Giessen, H. Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters. ACS Nano 2011, 5, 8202–8211. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-D.; Leong, E.S.P.; Li, G.-C.; Hou, Y.; Deng, J.; Teng, J.H.; Ong, H.C.; Lei, D.Y. Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation. ACS Nano 2016, 10, 1442–1453. [Google Scholar] [CrossRef]
- Miroshnichenko, A.E.; Kivshar, Y.S. Fano resonances in all-dielectric oligomers. Nano Lett. 2012, 12, 6459–6463. [Google Scholar] [CrossRef]
- Besbes, M.; Hugonin, J.P.; Lalanne, P.; van Haver, S.; Janssen, O.T.A.; Nugrowati, A.M.; Xu, M.; Pereira, S.F.; Urbach, H.P.; van de Nes, A.S.; et al. Numerical analysis of a slit-groove diffraction problem. J. Europ. Opt. Soc. Rap. Public 2007, 2, 07022. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, L.; Wang, X.; Yao, W.; Zhang, Q. Recent advances in noble metal based composite nanocatalysts: Colloidal synthesis, properties, and catalytic applications. Nanoscale 2015, 7, 10559–10583. [Google Scholar] [CrossRef]
- McMahon, J.M.; Henzie, J.; Odom, T.W.; Schatz, G.C.; Gray, S.K. Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Opt. Express 2007, 15, 18119–18129. [Google Scholar] [CrossRef]
- Zhang, S.; Bao, K.; Halas, N.J.; Xu, H.; Nordlander, P. Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011, 11, 1657–1663. [Google Scholar] [CrossRef]
- Muravitskaya, A.; Gokarna, A.; Movsesyan, A.; Kostcheev, S.; Rumyantseva, A.; Couteau, C.; Lerondel, G.; Baudrion, A.L.; Gaponenko, S.; Adam, P.M. Refractive index mediated plasmon hybridization in an array of aluminium nanoparticles. Nanoscale 2020, 12, 6394–6402. [Google Scholar] [CrossRef]
- Piper, J.R.; Liu, V.; Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 2014, 104, 251110. [Google Scholar] [CrossRef]
- Ming, X.; Liu, X.; Sun, L.; Padilla, W.J. Degenerate critical coupling in all-dielectric metasurface absorbers. Opt. Express 2017, 25, 24658–24669. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Jiao, R.; Wang, L.; Duan, G.; Yu, L. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt. Express 2017, 25, 3525–3533. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Yao, D. Tunable multiple all-optical switch based on multi-nanoresonator-coupled waveguide systems containing Kerr material. Opt. Commun. 2014, 312, 143–147. [Google Scholar] [CrossRef]
- Xu, X.F.; Luo, X.Q.; Zhang, J.Z.; Zhu, W.H.; Chen, Z.Y.; Li, T.F.; Liu, W.M.; Wang, X.L. Near-infrared plasmonic sensing and digital metasurface via double Fano resonances. Opt. Express 2022, 30, 5879–5895. [Google Scholar] [CrossRef] [PubMed]
- Ahmadivand, A.; Gerislioglu, B.; Sinha, R.; Karabiyik, M.; Pala, N. Optical switching using transition from dipolar to charge transfer plasmon modes in Ge2Sb2Te5 bridged metallodielectric dimers. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.F.; Luo, X.Q.; Liu, Q.K.; Li, Y.; Zhu, W.H.; Chen, Z.Y.; Liu, W.M.; Wang, X.L. Plasmonic sensing and switches enriched by tailorable multiple Fano resonances in rotational misalignment metasurfaces. Nanomaterials 2022, 12, 4226. [Google Scholar] [CrossRef]
- Joseph, S.; Pandey, S.; Sarkar, S.; Joseph, J. Bound states in the continuum in resonant nanostructures: An overview of engineered materials for tailored applications. Nanophotonics 2021, 10, 4175–4207. [Google Scholar] [CrossRef]
- Liu, Q.K.; Luo, X.Q.; Xu, X.; Li, Y.; Zhu, W.H.; Chen, Z.Y.; Liu, W.M.; Wang, X.L. Interplay of bound states in the continuum empowers spectral-lineshape manipulation in all-dielectric metasurfaces. Phys. Rev. B 2023, 107, 205422. [Google Scholar] [CrossRef]
- Ginzburg, P.; Rodríguez Fortuño, F.J.; Wurtz, G.A.; Dickson, W.; Murphy, A.; Morgan, F.; Pollard, R.J.; Iorsh, I.; Atrashchenko, A.; Belov, P.A.; et al. Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Opt. Express 2013, 21, 14907–14917. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhou, Y.; Liu, Q.; Lu, Z.; Luo, X.-Q.; Liu, W.-M.; Wang, X.-L. Multi-Wavelength Selective and Broadband Near-Infrared Plasmonic Switches in Anisotropic Plasmonic Metasurfaces. Nanomaterials 2023, 13, 3141. https://doi.org/10.3390/nano13243141
Li Y, Zhou Y, Liu Q, Lu Z, Luo X-Q, Liu W-M, Wang X-L. Multi-Wavelength Selective and Broadband Near-Infrared Plasmonic Switches in Anisotropic Plasmonic Metasurfaces. Nanomaterials. 2023; 13(24):3141. https://doi.org/10.3390/nano13243141
Chicago/Turabian StyleLi, Yan, Yaojie Zhou, Qinke Liu, Zhendong Lu, Xiao-Qing Luo, Wu-Ming Liu, and Xin-Lin Wang. 2023. "Multi-Wavelength Selective and Broadband Near-Infrared Plasmonic Switches in Anisotropic Plasmonic Metasurfaces" Nanomaterials 13, no. 24: 3141. https://doi.org/10.3390/nano13243141
APA StyleLi, Y., Zhou, Y., Liu, Q., Lu, Z., Luo, X.-Q., Liu, W.-M., & Wang, X.-L. (2023). Multi-Wavelength Selective and Broadband Near-Infrared Plasmonic Switches in Anisotropic Plasmonic Metasurfaces. Nanomaterials, 13(24), 3141. https://doi.org/10.3390/nano13243141