Cation Vacancies in Feroxyhyte Nanosheets toward Fast Kinetics in Lithium–Sulfur Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of rGO/CNT
2.2. Preparation of v-FeOOH /rGO/CNT@S Cathode
2.3. Preparation of FeOOH/rGO/CNT@S Cathode
2.4. Density Functional Theory Calculations
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Tao, L.; Xie, C.; Wang, D.; Zou, Y.; Chen, R.; Wang, Y.; Jia, C.; Wang, S. Defect Engineering on Electrode Materials for Rechargeable Batteries. Adv. Mater. 2020, 32, e1905923. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fang, R.; Xie, D.; Zhang, W.; Huang, H.; Xia, Y.; Wang, X.; Xia, X.; Tu, J. Revisiting Scientific Issues for Industrial Applications of Lithium-Sulfur Batteries. Energy Environ. Mater. 2018, 1, 196–208. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.-B.; Huang, J.-Q.; Zhang, Q.; Peng, H.-J.; Zhao, M.-Q.; Wei, F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries. Nano Energy 2014, 4, 65–72. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, W.; Xue, L.; Jiao, Y.; Lei, T.; Chu, J.; Huang, J.; Gong, C.; Yan, C.; Yan, Y.; et al. Adsorption-Catalysis Design in the Lithium-Sulfur Battery. Adv. Energy Mater. 2019, 10, 1903008. [Google Scholar] [CrossRef]
- Qin, B.; Cai, Y.; Wang, P.; Zou, Y.; Cao, J.; Qi, J. Crystalline molybdenum carbide−amorphous molybdenum oxide heterostructures: In situ surface reconfiguration and electronic states modulation for Li-S batteries. Energy Storage Mater. 2022, 47, 345–353. [Google Scholar] [CrossRef]
- Zheng, C.; Niu, S.; Lv, W.; Zhou, G.; Li, J.; Fan, S.; Deng, Y.; Pan, Z.; Li, B.; Kang, F.; et al. Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy 2017, 33, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhao, X.; Ma, C.; Yang, Z.; Chen, G.; Wang, L.; Yue, H.; Zhang, D.; Sun, Z. Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range Li–S batteries. J. Mater. Chem. A 2020, 8, 1212–1220. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Zhang, Y.; Wang, J.; Cui, G.; Li, M.; Bakenov, Z.; Wang, X. Defect-Rich Multishelled Fe-Doped Co3O4 Hollow Microspheres with Multiple Spatial Confinements to Facilitate Catalytic Conversion of Polysulfides for High-Performance Li−S Batteries. ACS Appl. Mater. Interfaces 2020, 12, 12763–12773. [Google Scholar] [CrossRef]
- Li, H.; Tsai, C.; Koh, A.L.; Cai, L.; Contryman, A.W.; Fragapane, A.H.; Zhao, J.; Han, H.S.; Manoharan, H.C.; Abild-Pedersen, F.; et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Chen, J.; Wu, H.; Lu, S.; Wang, K.; Li, H.; Harris, C.J.; Xi, K.; Kumar, R.V.; et al. Enhancing Catalytic Activity of Titanium Oxide in Lithium-Sulfur Batteries by Band Engineering. Adv. Energy Mater. 2019, 9, 1900953. [Google Scholar] [CrossRef]
- Liu, F.; Wang, N.; Shi, C.; Sha, J.; Ma, L.; Liu, E.; Zhao, N. Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium-sulfur batteries. Chem. Eng. J. 2022, 431, 133923. [Google Scholar] [CrossRef]
- Luo, M.; Bai, Y.; Sun, R.; Qu, M.; Wang, M.; Yang, Z.; Wang, Z.; Sun, W.; Sun, K. Enhancing anchoring and catalytic conversion of polysulfides by nitrogen deficient cobalt nitride for advanced lithium-sulfur batteries. J. Energy Chem. 2022, 73, 407–415. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, S.; Zhang, T.; Ye, H.; Yao, Q.; Zheng, G.W.; Lee, J.Y. Elucidating the Catalytic Activity of Oxygen Deficiency in the Polysulfide Conversion Reactions of Lithium-Sulfur Batteries. Adv. Energy Mater. 2018, 8, 1801868. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, D.; Li, L.; Zhou, L.; Liang, X.; Wu, Z.; Jiang, Z.-J. Defect-Rich, Mesoporous Cobalt Sulfide Hexagonal Nanosheets as Superior Sulfur Hosts for High-Rate, Long-Cycle Rechargeable Lithium–Sulfur Batteries. J. Phys. Chem. C 2020, 124, 12259–12268. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, W.; Fang, Y.; Ao, H.; Zhu, Y.; Qian, Y. Sulfur-Deficient TiS2-x for Promoted Polysulfide Redox Conversion in Lithium-Sulfur Batteries. ChemElectroChem 2019, 6, 2231–2237. [Google Scholar] [CrossRef]
- Lin, H.; Yang, L.; Jiang, X.; Li, G.; Zhang, T.; Yao, Q.; Zheng, G.W.; Lee, J.Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1476–1486. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Li, G.; Zhang, Y.; Luo, D.; Wang, X.; Zhao, Y.; Liu, H.; Ji, P.; Du, X.; Li, J.; et al. Low-Bandgap Se-Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward High-Performance Lithium-Sulfur Batteries. Adv. Mater. 2020, 32, 1904876. [Google Scholar] [CrossRef]
- Li, H.J.; Xi, K.; Wang, W.; Liu, S.; Li, G.R.; Gao, X.P. Quantitatively Regulating Defects of 2D Tungsten Selenide to Enhance Catalytic Ability for Polysulfide Conversion in a Lithium Sulfur Battery. Energy Storage Mater. 2021, 45, 1229–1237. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Ma, H.; Zhou, G.; Zhang, Y.; Wang, X. Engineering the 3D framework of defective phosphorene-based sulfur cathodes for high-efficiency lithium-sulfur batteries. Electrochim. Acta 2021, 392, 139025. [Google Scholar] [CrossRef]
- Ma, H.; Song, C.; Liu, N.; Zhao, Y.; Bakenov, Z. Nitrogen-Deficient Graphitic Carbon Nitride/Carbon Nanotube as Polysulfide Barrier of High-Performance Lithium-Sulfur Batteries. ChemElectroChem 2020, 7, 4906–4912. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, C.; Hua, J.; Hong, X.; Sun, C.; Li, H.W.; Xu, X.; Mai, L. Engineering Oxygen Vacancies in a Polysulfide-Blocking Layer with Enhanced Catalytic Ability. Adv. Mater. 2020, 32, e1907444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Si, Y.; Guo, W.; Li, X.; Tang, S.; Zhang, Z.; Wang, X.; Fu, Y. In Situ Synthesis of Vacancy-Rich Titanium Sulfide Confined in a Hollow Carbon Nanocage as an Efficient Sulfur Host for Lithium–Sulfur Batteries. ACS Appl. Energy Mater. 2021, 4, 10104–10113. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions. Adv. Mater. 2017, 29, 1606459. [Google Scholar] [CrossRef] [PubMed]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, Y.; Peng, H.Q.; Yang, R.; Jiang, Z.; Zhou, X.; Lee, C.S.; Zhao, H.; Zhang, W. Iron Vacancies Induced Bifunctionality in Ultrathin Feroxyhyte Nanosheets for Overall Water Splitting. Adv. Mater. 2018, 30, e1803144. [Google Scholar] [CrossRef]
- Zhu, K.; Wu, T.; Li, M.; Lu, R.; Zhu, X.; Yang, W. Perovskites decorated with oxygen vacancies and Fe-Ni alloy nanoparticles as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 19836–19845. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Guo, Y.; Jin, Z.; Cao, G.; Qiu, J.; Lian, F.; Wang, A.; Wang, W. Ultrathin nanosheets of FeOOH with oxygen vacancies as efficient polysulfide electrocatalyst for advanced lithium-sulfur batteries. Energy Storage Mater. 2022, 47, 561–568. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Wang, J.; Cui, G.; Wei, X.; Shui, L.; Kempa, K.; Zhou, G.; Wang, X.; Chen, Z. Hierarchical Defective Fe3-xC@C Hollow Microsphere Enables Fast and Long-Lasting Lithium-Sulfur Batteries. Adv. Funct. Mater. 2020, 30, 2001165. [Google Scholar] [CrossRef]
- Guo, B.; Bandaru, S.; Dai, C.; Chen, H.; Zhang, Y.; Xu, Q.; Bao, S.; Chen, M.; Xu, M. Self-Supported FeCo2S4 Nanotube Arrays as Binder-Free Cathodes for Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10, 43707–43715. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Chang, W.; Qu, J.; Sui, Y.-Q.; Abdelkrim, Y.; Liu, H.-J.; Zhai, X.-Z.; Guo, Y.-G.; Yu, Z.-Z. A polymer organosulfur redox mediator for high-performance lithium-sulfur batteries. Energy Storage Mater. 2022, 46, 313–321. [Google Scholar] [CrossRef]
- Qiu, Y.; Fan, L.; Wang, M.; Yin, X.; Wu, X.; Sun, X.; Tian, D.; Guan, B.; Tang, D.; Zhang, N. Precise Synthesis of Fe-N2 Sites with High Activity and Stability for Long-Life Lithium-Sulfur Batteries. ACS Nano 2020, 14, 16105–16113. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Tian, D.; Qiu, Y.; Song, X.; Zhang, Y.; Sun, X.; Huang, H.; Zhao, C.; Guo, Z.; Fan, L.; et al. High-Index Faceted Nanocrystals as Highly Efficient Bifunctional Electrocatalysts for High-Performance Lithium-Sulfur Batteries. Nano-Micro Lett. 2021, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Qu, Y.; Dang, R.; Ma, Z.; Duan, L.; Lü, W. Accelerated redox conversion by CoMoS3/CoS synergistic interactions for high-performance lithium sulfur batteries. J. Electroanal. Chem. 2022, 907, 116025. [Google Scholar] [CrossRef]
- Luo, D.; Li, G.; Deng, Y.P.; Zhang, Z.; Li, J.; Liang, R.; Li, M.; Jiang, Y.; Zhang, W.; Liu, Y.; et al. Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable Lithium-Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1900228. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Pang, Y.-c.; Chen, X.; Lang, J.; Xu, J.; Xiao, C.; Li, H.; Xi, K.; Ding, S. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019, 16, 228–235. [Google Scholar] [CrossRef]
- Feng, T.; Zhao, T.; Zhang, N.; Duan, Y.; Li, L.; Wu, F.; Chen, R. 2D Amorphous Mo-Doped CoB for Bidirectional Sulfur Catalysis in Lithium Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2202766. [Google Scholar] [CrossRef]
- Walus, S.; Barchasz, C.; Colin, J.F.; Martin, J.F.; Elkaim, E.; Lepretre, J.C.; Alloin, F. New insight into the working mechanism of lithium-sulfur batteries: In Situ and operando X-ray diffraction characterization. Chem. Commun. 2013, 49, 7899–7901. [Google Scholar] [CrossRef]
- Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nat. Energy 2017, 2, 17069. [Google Scholar] [CrossRef]
- Feng, T.; Zhao, T.; Zhu, S.; Zhang, N.; Wei, Z.; Wang, K.; Li, L.; Wu, F.; Chen, R. Anion-Doped Cobalt Selenide with Porous Architecture for High-Rate and Flexible Lithium-Sulfur Batteries. Small Methods 2021, 5, e2100649. [Google Scholar] [CrossRef] [PubMed]
- Cañas, N.A.; Wolf, S.; Wagner, N.; Friedrich, K.A. In-Situ X-ray diffraction studies of lithium-sulfur batteries. J. Power Sources 2013, 226, 313–319. [Google Scholar] [CrossRef]
- Huang, S.; Lim, Y.V.; Zhang, X.; Wang, Y.; Zheng, Y.; Kong, D.; Ding, M.; Yang, S.A.; Yang, H.Y. Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery. Nano Energy 2018, 51, 340–348. [Google Scholar] [CrossRef]
- Ma, F.; Yu, B.; Zhang, X.; Zhang, Z.; Srinivas, K.; Wang, X.; Liu, D.; Wang, B.; Zhang, W.; Wu, Q.; et al. WN0.67-Embedded N-doped Graphene-Nanosheet Interlayer as efficient polysulfide catalyst and absorbant for High-Performance Lithium-Sulfur batteries. Chem. Eng. J. 2022, 431, 133439. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, A.; Mu, J.; Zhou, J.; Tang, X.; Zhuo, S. Cation Vacancies in Feroxyhyte Nanosheets toward Fast Kinetics in Lithium–Sulfur Batteries. Nanomaterials 2023, 13, 909. https://doi.org/10.3390/nano13050909
Niu A, Mu J, Zhou J, Tang X, Zhuo S. Cation Vacancies in Feroxyhyte Nanosheets toward Fast Kinetics in Lithium–Sulfur Batteries. Nanomaterials. 2023; 13(5):909. https://doi.org/10.3390/nano13050909
Chicago/Turabian StyleNiu, Aimin, Jinglin Mu, Jin Zhou, Xiaonan Tang, and Shuping Zhuo. 2023. "Cation Vacancies in Feroxyhyte Nanosheets toward Fast Kinetics in Lithium–Sulfur Batteries" Nanomaterials 13, no. 5: 909. https://doi.org/10.3390/nano13050909
APA StyleNiu, A., Mu, J., Zhou, J., Tang, X., & Zhuo, S. (2023). Cation Vacancies in Feroxyhyte Nanosheets toward Fast Kinetics in Lithium–Sulfur Batteries. Nanomaterials, 13(5), 909. https://doi.org/10.3390/nano13050909