Electrocatalytic Properties of Co3O4 Prepared on Carbon Fibers by Thermal Metal–Organic Deposition for the Oxygen Evolution Reaction in Alkaline Water Electrolysis
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Cobalt Oxide Electrocatalysts
2.2. Structural Characterization
2.3. Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2008, 2, 148–173. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- David, M.C.; Ocampo-Martínez; Sánchez-Peña, R. Advances in alkaline water electrolyzers: A review. J. Energy Storage 2019, 23, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Turner, J. Sustainable hydrogen production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef]
- Park, S.; Shao, Y.; Liu, J.; Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective. Energy Environ. Sci. 2012, 5, 9331–9344. [Google Scholar] [CrossRef]
- Song, F.; Bai, L.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357. [Google Scholar] [CrossRef] [Green Version]
- Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645. [Google Scholar] [CrossRef]
- Kim, K.-H.; Choi, Y.-H. Highly efficient CoFe2O4 electrocatalysts prepared facilely by metal-organic decomposition process for the oxygen evolution reaction. Electrochim. Acta 2021, 395, 139195. [Google Scholar] [CrossRef]
- Kim, K.-H.; Choi, Y.-H. Surface oxidation of cobalt carbonate and oxide nanowires by electrocatalytic oxygen evolution reaction in alkaline solution. Mater. Res. Express 2022, 9, 034001. [Google Scholar] [CrossRef]
- Kim, K.-H.; Choi, Y.-H.; Hong, S.-H. A MnV2O6/graphene nanocomposite as an efficient electrocatalyst for the oxygen evolution reaction. Nanoscale 2020, 12, 16028–16033. [Google Scholar] [CrossRef]
- Choi, Y.-H. VO2 as a highly efficient electrocatalyst for the oxygen evolution reaction. Nanomaterials 2022, 12, 939. [Google Scholar] [CrossRef]
- Liao, C.; Lee, Y.; Chang, S.; Fung, K. Structural characterization and electrochemical properties of RF-sputtered nanocrystalline Co3O4 thin-film anode. J. Power Sources 2006, 158, 1379–1385. [Google Scholar] [CrossRef]
- Hu, L.; Peng, Q.; Li, Y. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137. [Google Scholar] [CrossRef]
- Iablokov, V.; Barbosa, R.; Pollefeyt, G.; Van Driessche, I.; Chenakin, S.; Kruse, N. Catalytic CO oxidation over well-defined cobalt oxide nanoparticles: Size-reactivity correlation. ACS Catal. 2015, 5, 5714–5718. [Google Scholar] [CrossRef]
- Wöllenstein, J.; Burgmair, M.; Plescher, G.; Sulima, T.; Hildenbrand, J.; Böttner, H.; Eisele, I. Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sens. Actuators B Chem. 2003, 93, 442–448. [Google Scholar] [CrossRef]
- Xu, W.; Xie, W.; Wang, Y. Co3O4-x-carbon@Fe2-yCoyO3 heterostructural hollow polyhedrons for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 28642–28649. [Google Scholar] [CrossRef]
- Esswein, A.; McMurdo, M.; Ross, P.; Bell, A.; Tilley, T. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 2009, 113, 15068–15072. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Anandhababu, G.; Mahalingam, T.; Ravi, G. Photoelectrochemical study of MoO3 assorted morphology films formed by thermal evaporation. J. Energy Chem. 2016, 25, 798–804. [Google Scholar] [CrossRef]
- Han, M.A.; Kim, H.-J.; Lee, H.C.; Park, J.-S.; Lee, H.-N. Effects of porosity and particle size on the gas sensing properties of SnO2 filmsHan. Appl. Surf. Sci. 2019, 481, 133–137. [Google Scholar] [CrossRef]
- Hess, H.; Kaschnitz, E.; Pottlacher, G. Thermophysical properties of liquid cobalt. High Press. Res. 1994, 12, 29–42. [Google Scholar] [CrossRef]
- Rashad, M.; Rüsing, M.; Berth, G.; Lischka, K.; Pawlis, A. CuO and Co3O4 nanoparticles: Synthesis, characterizations, and Raman spectroscopy. J. Nanomater. 2013, 2013, 82. [Google Scholar] [CrossRef] [Green Version]
- Jirátová, K.; Perekrestov, R.; Dvořáková, M.; Balabánová, J.; Topka, P.; Koštejn, M.; Olejníček, J.; Čada, M.; Hubička, Z.; Kovanda, F. Cobalt oxide catalysts in the form of thin films prepared by magnetron sputtering on stainless-steel meshes: Performance in ethanol oxidation. Catalysts 2019, 9, 806. [Google Scholar] [CrossRef] [Green Version]
- Lyons, M.; Brandon, M. The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution part Ⅱ–cobalt. Int. J. Electrochem. Sci. 2008, 3, 1425–1462. [Google Scholar]
- Shinagawa, T.; Garcia-Esparza, A.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801. [Google Scholar] [CrossRef] [Green Version]
- Bockris, J.; Otagawa, T. Mechanism of oxygen evolution on perovskites. J. Phys. Chem. 1983, 87, 2960–2971. [Google Scholar] [CrossRef]
- Krasil’shchikov, A. On the intermediate stages of anodic oxygen evolution. Zh. Fiz. Khim. 1963, 37, 531–537. [Google Scholar]
- Kobussen, A.; Broers, G. The oxygen evolution on La0.5Ba0.5CoO3: Theoretical impedance behaviour for a multi-step mechanism involving two adsorbates. J. Electroanal. Chem. Interfacial Electrochem. 1981, 126, 221–240. [Google Scholar] [CrossRef]
- O’Grady, W.; Iwakura, C.; Huang, J.; Yeager, E.; Breiter, M. (Eds.) Proceedings of the Symposium on Electrocatalysis; The Electrochemical Society: Pennington, NJ, USA, 1974; p. 286. [Google Scholar]
- Sondermann, L.; Jiang, W.; Shviro, M.; Spieß, A.; Woschko, D.; Rademacher, L.; Janiak, C. Nickel-based metal-organic frameworks as electrocatalysts for the oxygen evolution reaction (OER). Molecules 2022, 27, 1241. [Google Scholar] [CrossRef]
- Doyle, R.; Lyons, M. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Phys. Chem. Chem. Phys. 2013, 15, 5224–5237. [Google Scholar] [CrossRef]
- Moysiadou, A.; Lee, S.; Hsu, C.-S.; Chen, H.M.; Hu, X. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 2020, 142, 11901–11914. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Lee, J.; Parija, A.; Cho, J.; Verkhoturov, S.V.; Al-Hashimi, M.; Fang, L.; Banerjee, S. An in situ sulfidation approach for the integration of MoS2 nanosheets on carbon fiber paper and the modulation of its electrocatalytic activity by interfacing with nC60. ACS Catal. 2016, 6, 6246–6254. [Google Scholar] [CrossRef]
- Zhao, X.; Yin, F.; He, X.; Chen, B.; Li, G. Enhancing hydrogen evolution reaction activity on cobalt oxide in alkaline electrolyte by doping inactive rare-earth metal. Electrochim. Acta 2020, 363, 137230. [Google Scholar] [CrossRef]
- Illathvalappil, R.; George, L.; Kurungot, S. Coexisting few-layer assemblies of NiO and MoO3 deposited on vulcan carbon as an efficient and durable electrocatalyst for water oxidation. ACS Appl. Energy Mater. 2019, 2, 4987–4998. [Google Scholar] [CrossRef]
- Wang, X.-D.; Chen, H.-Y.; Xu, Y.-F.; Liao, J.-F.; Chen, B.-X.; Rao, H.-S.; Kuang, D.-B.; Su, C.-Y. Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. J. Mater. Chem. A 2017, 5, 7191–7199. [Google Scholar] [CrossRef]
- Co3O4 COD 9005896 (Materialscloud.org). Available online: https://discover.materialscloud.org/topomat/materials/4336 (accessed on 1 January 2022).
- Materials Explorer by Materials Project. Available online: https://materialsproject.org/materials/mp-18748 (accessed on 1 January 2022).
- Koo, J.; Hong, K.; Park, J.; Shin, D. Effect of grain size on transmittance and mechanical strength of sintered Alumina. Mater. Sci. Eng. A 2004, 374, 191–195. [Google Scholar]
- Mi, C.; Zhang, X.; Zhao, X.; Li, H. Effect of sintering time on the physical and electrochemical properties of LiFePO4/C composite cathodes. J. Alloys Compd. 2006, 424, 327–333. [Google Scholar] [CrossRef]
- Samal, R.; Dash, B.; Sarangi, C.K.; Sanjay, K.; Subbaiah, T.; Senanayake, G.; Minakshi, M. Influence of synthesis temperature on the growth and surface morphology of Co3O4 nanocubes for supercapacitor applications. Nanomaterials 2017, 7, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, S.; Tung, C.; Chan, T.; Chen, H. In situ morphological transformation and investigation of electrocatalytic properties of cobalt oxide nanostructures toward oxygen evolution. CrystEngComm 2016, 18, 6008–6012. [Google Scholar] [CrossRef]
- Liu, X.; Chang, Z.; Luo, L.; Xu, T.; Lei, X.; Liu, J.; Sun, X. Hierarchical ZnxCo3-xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 2014, 26, 1889–1895. [Google Scholar] [CrossRef]
- Jeon, H.; Jee, M.; Kim, H.; Ahn, S.; Hwang, Y.; Min, B. Simple chemical solution deposition of Co3O4 thin film electrocatalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2015, 7, 24550–24555. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Han, G.; Li, X.; Dong, B.; Shang, X.; Hu, W.; Chai, Y.; Liu, Y.; Liu, C. A facile synthesis of reduced Co3O4 nanoparticles with enhanced electrocatalytic activity for oxygen evolution. Int. J. Hydrogen Energy 2016, 41, 12976–12982. [Google Scholar] [CrossRef]
- Du, S.; Ren, Z.; Zhang, J.; Wu, J.; Xi, W.; Zhu, J.; Fu, H. Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 2015, 51, 8066–8069. [Google Scholar] [CrossRef]
- Li, L.; Tian, T.; Jiang, J.; Ai, L. Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. J. Power Sources 2015, 294, 103–111. [Google Scholar] [CrossRef]
- Lal, B.; Singh, N.K.; Samuel, S.; Singh, R.N. Electrocatalytic properties of CuxCo3-xO4 (0 ≤ x ≤ 1) obtained by a precipitation method for oxygen evolution. J. New Mat. Electrochem. Systems 1999, 2, 59–64. [Google Scholar]
- Chou, N.H.; Ross, P.N.; Bell, A.T.; Tilley, T.D. Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. ChemSusChem 2011, 4, 1566–1569. [Google Scholar] [CrossRef]
- Grewe, T.; Deng, X.; Weidenthaler, C.; Schuth, F.; Tuysuz, H. Design of ordered mesoporous composite materials and their electrocatalytic activities for water oxidation. Chem. Mater. 2013, 25, 4926–4935. [Google Scholar] [CrossRef]
- Sa, Y.J.; Kwon, K.; Cheon, J.Y.; Kleitz, F.; Joo, S.H. Ordered Mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. J. Mater. Chem. A 2013, 1, 9992–10001. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.F.; Yang, S.; Zheng, L.R.; Zhang, B.; Yang, H.G. Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 9578–9584. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Yao, T.; He, J.; Jiang, S.; Sun, Z.; Liu, Q.; Cheng, W.; Hu, F.; Jiang, Y.; et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 2015, 54, 8722–8727. [Google Scholar] [CrossRef]
- Babar, P.T.; Lokhande, A.C.; Pawar, B.S.; Gang, M.G.; Jo, E.; Go, C.; Suryawanshi, M.P.; Pawar, S.M.; Kim, J.H. Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Appl. Surf. Sci. 2018, 427 Pt A, 253–259. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.G.; Choi, Y.-H. Electrocatalytic Properties of Co3O4 Prepared on Carbon Fibers by Thermal Metal–Organic Deposition for the Oxygen Evolution Reaction in Alkaline Water Electrolysis. Nanomaterials 2023, 13, 1021. https://doi.org/10.3390/nano13061021
Kim MG, Choi Y-H. Electrocatalytic Properties of Co3O4 Prepared on Carbon Fibers by Thermal Metal–Organic Deposition for the Oxygen Evolution Reaction in Alkaline Water Electrolysis. Nanomaterials. 2023; 13(6):1021. https://doi.org/10.3390/nano13061021
Chicago/Turabian StyleKim, Myeong Gyu, and Yun-Hyuk Choi. 2023. "Electrocatalytic Properties of Co3O4 Prepared on Carbon Fibers by Thermal Metal–Organic Deposition for the Oxygen Evolution Reaction in Alkaline Water Electrolysis" Nanomaterials 13, no. 6: 1021. https://doi.org/10.3390/nano13061021
APA StyleKim, M. G., & Choi, Y. -H. (2023). Electrocatalytic Properties of Co3O4 Prepared on Carbon Fibers by Thermal Metal–Organic Deposition for the Oxygen Evolution Reaction in Alkaline Water Electrolysis. Nanomaterials, 13(6), 1021. https://doi.org/10.3390/nano13061021