A Facile Approach of Fabricating Bifunctional Catalysts for Redox Applications by Uniformly Immobilized Metallic Nanoparticles on NiCr LDH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. LDH
2.2.2. Synthesis of Ag-Based and Pd-Based NiCr LDH
2.3. Characterizations
2.4. Catalytic Performance Assessment
2.4.1. Reduction of Nitrobenzene
2.4.2. Carbon Monoxide Oxidation
3. Results and Discussion
3.1. Spectroscopic Feature of Nanocomposites
3.1.1. Crystal Structure
3.1.2. Surface Chemical State
3.2. Surface Characteristics and Porosity
3.3. Morphology Assessment
3.4. Catalytic Performance
CO Oxidation
3.5. Nitrobenzene (NB) Reduction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Rouby, W.M.A.; El-Dek, S.I.; Goher, M.E.; Noaemy, S.G. Efficient water decontamination using layered double hydroxide beads nanocomposites. Environ. Sci. Pollut. Res. 2018, 27, 18985–19003. [Google Scholar] [CrossRef] [PubMed]
- Sayed, R.A.; El Hafiz, S.E.A.; Gamal, N.; GadelHak, Y.; El Rouby, W.M. Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting. J. Alloys Compd. 2017, 728, 1171–1179. [Google Scholar] [CrossRef]
- Elgiddawy, N.; Essam, T.M.; El Rouby, W.M.A.; Raslan, M.; Farghali, A.A. New approach for enhancing Chlorella vulgaris biomass recovery using ZnAl-layered double hydroxide nanosheets. J. Appl. Phycol. 2017, 29, 1399–1407. [Google Scholar] [CrossRef]
- El-Shahawy, A.A.; El-Ela, F.I.A.; Mohamed, N.A.; Eldine, Z.E.; El Rouby, W.M. Synthesis and evaluation of layered double hydroxide/doxycycline and cobalt ferrite/chitosan nanohybrid efficacy on gram positive and gram negative bacteria. Mater. Sci. Eng. 2018, 91, 361–371. [Google Scholar] [CrossRef]
- Eshghi, A.; Kheirmand, M. Graphene/Ni–Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation. Int. J. Hydrogen Energy 2017, 42, 15064–15072. [Google Scholar] [CrossRef]
- Lonkar, S.P.; Raquez, J.-M.; Dubois, P. One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide (LDH) Nanohybrids. Nano-Micro Lett. 2015, 7, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Ye, S.; Xu, X.; Liang, J.; He, G.; Chen, H. Rreduced graphene oxide based NiCo layered double hydroxide nanocomposites: An efficient catalyst for epoxidation of styrene. Inorg. Chem. Commun. 2019, 104, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Cavani, F.; Trifiro, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Das, J.; Patra, B.S.; Baliarsingh, N.; Parida, K.M. Adsorption of phosphate by layered double hydroxides in aqueous solutions. Appl. Clay Sci. 2006, 32, 252–260. [Google Scholar] [CrossRef]
- Parida, K.; Sahoo, M.; Singha, S. A novel approach towards solvent-free epoxidation of cyclohexene by Ti(IV)–Schiff base complex-intercalated LDH using H2O2 as oxidant. J. Catal. 2010, 276, 161–169. [Google Scholar] [CrossRef]
- Das, D.P.; Das, J.; Parida, K. Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. J. Colloid Interface Sci. 2003, 261, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Singha, S.; Sahoo, M.; Parida, K.M. Highly active Pd nanoparticles dispersed on amine functionalized layered double hydroxide for Suzuki coupling reaction. Dalton Trans. 2011, 40, 7130–7132. [Google Scholar] [CrossRef] [PubMed]
- Baliarsingh, N.; Parida, K.M.; Pradhan, G.C. Influence of the nature and concentration of precursor metal ions in the brucite layer of LDHs for phosphate adsorption—A review. RSC Adv. 2013, 3, 23865–23878. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.; Xu, K.Q.; Xia, J.; Liu, Q.; Wang, Z. Highly dispersed ultrafine Pt nanoparticles on nickel-cobalt layered double hydroxide nanoarray for enhanced electrocatalytic methanol oxidation. Int. J. Hydrogen Energy 2018, 43, 16302–16310. [Google Scholar] [CrossRef]
- Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 2016, 19, 213–226. [Google Scholar] [CrossRef]
- Ye, W.; Fang, X.; Chen, X.; Yan, D. A three-dimensional nickel–chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. Nanoscale 2018, 10, 19484–19491. [Google Scholar] [CrossRef]
- Chowdhury, P.; Bhattacharyya, K. Ni/Co/Ti layered double hydroxide for highly efficient photocatalytic degradation of Rhodamine B and Acid Red G: A comparative study. Photochem. Photobiol. Sci. 2017, 16, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Ganley, J.C.; Karikari, N.K.; Raghavan, D. Performance Enhancement of Alkaline Direct Methanol Fuel Cells by Ni/Al Layered Double Hydroxides. J. Fuel Cell Sci. Technol. 2010, 7, 0310191–0310196. [Google Scholar] [CrossRef]
- Vlamidis, Y.; Fiorilli, S.; Giorgetti, M.; Gualandi, I.; Scavetta, E.; Tonelli, D. Role of Fe in the oxidation of methanol electrocatalyzed by Ni based layered double hydroxides: X-ray spectroscopic and electrochemical studies. RSC Adv. 2016, 6, 110976–110985. [Google Scholar] [CrossRef]
- Ruan, X.; Chen, Y.; Chen, H.; Qian, G.; Frost, R. Sorption behavior of methyl orange from aqueous solution on organic matter and reduced graphene oxides modified NiCr layered double hydroxides. Chem. Eng. J. 2016, 297, 295–303. [Google Scholar] [CrossRef]
- Dong, C.; Yuan, X.; Wang, X.; Liu, X.; Dong, W.; Wang, R.; Duan, Y.; Huang, F. Rational design of cobalt-chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. J. Mater. Chem. 2016, 4, 11292–11298. [Google Scholar] [CrossRef]
- Gamil, S.; El Rouby, W.M.A.; Antuch, M.; Zedan, I.T. Nanohybrid layered double hydroxide materials as efficient catalysts for methanol electrooxidation. RSC Adv. 2019, 9, 13503–13514. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Temprano, M.H.; Casares, J.A.; Espinet, P. Bimetallic Catalysis using Transition and Group 11 Metals: An Emerging Tool for C-C Coupling and Other Reactions. Chem. Eur. J. 2012, 18, 1864–1884. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, Z.; Wang, C.; Xu, G.; Chu, B.; Zhang, C.; He, H. Progress on selective catalytic oxidation of ammonia (NH3-SCO) over Ag-based catalysts. Catal. Today 2022, in press. [Google Scholar] [CrossRef]
- Sarwat, I.; Xi, L.; Obaid, F.A.; Peter, J.M.; Jennifer, K.E.; Gemma, L.B.; Adeeba, A.; Gavin, M.K.; Thomas, E.D.; David, J.M.; et al. Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catal. Sci. Tech. 2014, 4, 2280–2286. [Google Scholar]
- Obaid, F.A.; Sarwat, I.; Peter, J.M.; Gemma, L.B.; Daniel, R.J.; Xi, L.; Jennifer, K.E.; David, J.M.; David, K.K.; Graham, J.H. Pd–Ru/TiO2 catalyst–An active and selective catalyst for furfural hydrogenation. Catal. Sci. Tech. 2016, 6, 234–242. [Google Scholar]
- Liu, Y.; Sun, X. Layered double hydroxides: Synthesis, properties and applications. Chem. Soc. Rev. 2017, 46, 2116–2145. [Google Scholar]
- Somasundaram, S.; Chung, I.M.; Vanaraj, R.; Ramaganthan, B.; Mayakrishnan, G. Highly active and reducing agent-free preparation of cost-effective NiO-based carbon nanocomposite and its application in reduction reactions under mild conditions. J. Ind. Eng. Chem. 2018, 60, 91–101. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, T.; Chen, X.; Xu, K.; Zhang, J.; Huang, J. Pd nanoparticles on a porous ionic copolymer: A highly active and recyclable catalyst for Suzuki–Miyaura reaction under air in water. Chem. Commun. 2011, 47, 3592–3594. [Google Scholar] [CrossRef]
- Alhumaimess, M.S.; Alsohaimi, I.H.; Hassan, H.; El-Sayed, M.Y.; Alshammari, M.S.; Aldosari, O.F.; Alshammari, H.M.; Kamel, M.M. Synthesis of ionic liquid intercalated layered double hydroxides of magnesium and aluminum: A greener catalyst of Knoevenagel condensation. J. Saudi Chem. Soc. 2020, 24, 321–333. [Google Scholar] [CrossRef]
- Kamel, M.M.; Alhumaimess, M.S.; Alotaibi, M.H.; Alsohaimi, I.H.; Hassan, H.; Alshammari, H.M.; Aldosari, O.F. Decomposition and removal of hydrazine by Mn/MgAl-layered double hydroxides. Desalination Water Treat. 2020, 205, 242–251. [Google Scholar] [CrossRef]
- Alshammari, H.M.; Humaidi, J.R.; Alhumaimess, M.S.; Aldosari, O.F.; Alotaibi, M.H.; Hassan, H.M.A.; Wawata, I. Bimetallic Au:Pd nanoparticle supported on MgO for the oxidation of benzyl alcohol. React. Kinet. Mech. Catal. 2019, 128, 97–108. [Google Scholar] [CrossRef]
- Abad, A.; Concepción, P.; Corma, A.; García, H. A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols. Angew. Chem. Int. Ed. 2005, 44, 4066–4069. [Google Scholar] [CrossRef]
- Hashmi, A.; Stephen, K.; Graham, J.H. Gold catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936. [Google Scholar] [CrossRef] [PubMed]
- Dimitratos, N.; Villa, A.; Wang, D.; Porta, F.; Su, D.; Prati, L. Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. J. Catal. 2006, 244, 113–121. [Google Scholar] [CrossRef]
- Alhumaimess, M.S.; Essawy, A.A.; Kamel, M.M.; Alsohaimi, I.H.; Hassan, H.M.A. Biogenic-Mediated Synthesis of Mesoporous Cu2O/CuO Nano-Architectures of Superior Catalytic Reductive towards Nitroaromatics. Nanomaterials 2020, 10, 781. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.R.; Han, J.; Nam, S.W.; Lim, T.H.; Hong, S.A.; Lee, H.I. Selective oxidation of CO over CuO-CeO2 catalyst: Effect of calcination temperature. Catal. Today 2004, 93, 183–190. [Google Scholar] [CrossRef]
- Vorontsov, A.V.; Tsybulya, S.V. Influence of Nanoparticles Size on XRD Patterns for Small Monodisperse Nanoparticles of Cu0 and TiO2 Anatase. Ind. Eng. Chem. Res. 2018, 57, 2526–2536. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Hu, Y.; Guan, M.; Xu, L.; Li, H.; Li, H. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B Environ. 2020, 272, 118959. [Google Scholar] [CrossRef]
- Qiu, C.; Jiang, J.; Ai, L. When Layered Nickel–Cobalt Silicate Hydroxide Nanosheets Meet Carbon Nanotubes: A Synergetic Coaxial Nanocable Structure for Enhanced Electrocatalytic Water Oxidation. ACS Appl. Mater. Interfaces 2015, 8, 945–951. [Google Scholar] [CrossRef]
- Yang, J.; Baker, A.G.; Liu, H.; Martens, W.N.; Frost, R.L. Size-controllable synthesis of chromium oxyhydroxide nanomaterials using a soft chemical hydrothermal route. J. Mater. Sci. 2010, 45, 6574–6585. [Google Scholar] [CrossRef]
- Salama, R.S.; Mannaa, M.A.; Altass, H.M.; Ibrahim, A.A.; Khder, A.E.R.S. Palladium supported on mixed-metal–organic framework (Co–Mn-MOF-74) for efficient catalytic oxidation of CO. RSC Adv. 2021, 11, 4318–4326. [Google Scholar] [CrossRef]
- Qi, X.; Tian, H.; Dang, X.; Fan, Y.; Zhang, Y.; Zhao, H. A bimetallic Co/Mn metal–organic-framework with a synergistic catalytic effect as peroxidase for the colorimetric detection of H2O2. Anal. Methods 2019, 11, 1111–1124. [Google Scholar] [CrossRef]
- Ali, A.A.; Madkour, M.; Al Sagheer, F.; Zaki, M.I.; Nazeer, A.A. Low-Temperature Catalytic CO Oxidation Over Non-Noble, Efficient Chromia in Reduced Graphene Oxide and Graphene Oxide Nanocomposites. Catalysts 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, W.; Zhang, Y.; Xia, Q.; Chen, Q.; Yang, X. Enhanced catalytic performance of Ni-Cr layered double hydroxides by decorating with highly dispersed Pd for benzyl alcohol oxidation. RSC Adv. 2018, 8, 3156–3164. [Google Scholar]
- Wu, W.; Wang, X.; Wang, S.; Zhang, Y.; Xia, Q.; Chen, Q.; Yang, X. Remarkable effect of highly dispersed Pd on Ni-Cr layered double hydroxides for selective oxidation of benzyl alcohol. Appl. Catal. Environ. 2019, 244, 91–101. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
Catalysts | d(003)/ (nm) | d(006)/ (nm) | d(110)/ (nm) | Lattice Parameter (nm) | Particle Size (nm) | |
---|---|---|---|---|---|---|
a = 2d110 | c = 3d003 | |||||
NiCr LDH | 0.7169 | 0.3964 | 0.1521 | 0.3042 | 2.1507 | 10.1 |
Ag@NiCr LDH | 0.7202 | 0.3984 | 0.1521 | 0.3042 | 2.1606 | 11.2 |
Pd@NiCr LDH | 0.7632 | 0.3921 | 0.1522 | 0.3044 | 2.2893 | 10.7 |
Catalysts | SBET/m2 g−1 | DBJH/nm | VBJH/cm3 g−1 |
---|---|---|---|
Ni-Cr LDH | 72.4 | 6.2 | 0.1562 |
Ag@Ni-Cr LDH | 92.3 | 7.4 | 0.2542 |
Pd@Ni-Cr LDH | 110.7 | 12.3 | 0.3389 |
Catalyst | Conversion (%) * | Kinetic Parameters | |||
---|---|---|---|---|---|
Kapp (min−1) | R2 | t1/2 (min) | kAF ** (min−1 g−1) | ||
NiCr LDH | 46.2 | 0.034 | 0.9675 | 20.4 | 34 |
Ag@ NiCr LDH | 78.3 | 0.053 | 0.9134 | 13.1 | 53 |
Pd@ NiCr LDH | 98.7 | 0.365 | 0.9815 | 1.9 | 365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhumaimess, M.S.; Aldosari, O.F.; Alqhobisi, A.N.; Alhaidari, L.M.; Altwala, A.; Alzarea, L.A.; Hassan, H.M.A. A Facile Approach of Fabricating Bifunctional Catalysts for Redox Applications by Uniformly Immobilized Metallic Nanoparticles on NiCr LDH. Nanomaterials 2023, 13, 987. https://doi.org/10.3390/nano13060987
Alhumaimess MS, Aldosari OF, Alqhobisi AN, Alhaidari LM, Altwala A, Alzarea LA, Hassan HMA. A Facile Approach of Fabricating Bifunctional Catalysts for Redox Applications by Uniformly Immobilized Metallic Nanoparticles on NiCr LDH. Nanomaterials. 2023; 13(6):987. https://doi.org/10.3390/nano13060987
Chicago/Turabian StyleAlhumaimess, Mosaed S., Obaid F. Aldosari, Almaha N. Alqhobisi, Laila M. Alhaidari, Afnan Altwala, Linah A. Alzarea, and Hassan M. A. Hassan. 2023. "A Facile Approach of Fabricating Bifunctional Catalysts for Redox Applications by Uniformly Immobilized Metallic Nanoparticles on NiCr LDH" Nanomaterials 13, no. 6: 987. https://doi.org/10.3390/nano13060987
APA StyleAlhumaimess, M. S., Aldosari, O. F., Alqhobisi, A. N., Alhaidari, L. M., Altwala, A., Alzarea, L. A., & Hassan, H. M. A. (2023). A Facile Approach of Fabricating Bifunctional Catalysts for Redox Applications by Uniformly Immobilized Metallic Nanoparticles on NiCr LDH. Nanomaterials, 13(6), 987. https://doi.org/10.3390/nano13060987