Current Achievements in Flexible Piezoelectric Nanogenerators Based on Barium Titanate
Abstract
:1. Introduction
2. BaTiO3 Nanomaterial Types and Design of Flexible p-NGs Structures
3. p-NGs Based on BaTiO3 Nanomaterials with Non-Piezoelectric Additives
4. p-NGs Based on BaTiO3 Nanomaterials with Piezoelectric Polymers
5. Parameters Affecting Output Performance of p-NG
5.1. Concentration of BaTiO3 Nanomaterial in Composites
5.2. Poling Process
5.3. Influence of Applied Mechanical Stress Mode
5.4. Thickness of Working Layer
6. Power Performance
7. Potential Application of BaTiO3-Based p-NGs
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
BT | barium titanate |
BT NF-H | barium titanate nanofibres horizontal |
BT NF-R | barium titanate nanofibres random |
BT NF-V | barium titanate nanofibres vertical |
C-LDPE | carbon-impregnated low density polyethylene |
CNT | carbon nanotubes |
DMF | dimethylformamide |
f-PEH | flexible piezoelectric energy harvester |
Isc | short-circuit current |
ITO | indium tin oxide |
LbL | layer-by-layer |
LED | light emission diode |
MWCNT | multi wall carbon nanotubes |
NCs | nanocubes |
NCr | nanocrystals |
Gr | graphene |
NFs | nanofibres |
NPs | nanoparticles |
NTs | nanotubes |
NWs | nanowires |
OA | oleic acid |
PAA | poly(acrylic acid) |
PDA | polydopamine |
PDMS | polydimethylsiloxane |
PEH | piezoelectric energy harvester |
PET | polyethylene terephthalate |
PI | polyimide |
PLA | polylactic acid |
p-NG | piezo nanogenerator |
PS | polystyrene |
PVC | polyvinyl chloride |
PVDF | polyvinylidene fluoride |
P(VDF-HFP) | poly(vinylidene fluoride-co-hexafluoropropylene) |
P(VDF-TrFE) | poly(vinylidene fluoride-co-trifluoroethylene) |
PZT | lead zirconate titanate |
RGO | reduced graphene oxide |
SEM | scanning electron microscopy |
SPs | spherical nanoparticles |
Voc | open-circuit voltage |
Appendix A
Applied Field or Voltage | Time, h | Temperature, °C | Work Layer | The Highest Output Voltage, V | Ref. |
---|---|---|---|---|---|
30 kV/cm | 3 | 100 | fibres made of BT NWs-PVC | 0.9 | [44] |
50 kV/cm | 12 | 120 | Random BT NFs-PDMS | 0.56 | [49] |
50 kV/cm | 12 | 120 | Horizontal BT NFs in PDMS | 1.48 | [49] |
50 kV/cm | 12 | 120 | VA BT NFs in PDMS | 2.67 | [49] |
80 kV/cm | 12 | rt | BT NTs-PDMS | 5.5 | [54] |
100 kV/cm | 1 | rt | horizontal BT NW covered by PDMS | 0.21 | [48] |
100 kV/cm | 12 | 90 | BT NWs-PLA | 0.49 | [47] |
100 kV/cm | 15 | 140 | MIM ribbons of BT nanofilm | 1 | [17] |
100 kV/cm | 20 | 100 | BT NPs-P(VDF-HFP) | 1.4 | [33] |
100 kV/cm | 20 | 100 | BT NPs-P(VDF-HFP) | 110 | [34] |
100 kV/cm | 20 | 150 | BT NPs-(CNT or RGO)-PDMS | 3.2 | [41] |
100 kV/cm | 20 | 100 | BT NPs-P(VDF-HFP) | 75 | [35] |
±120 kV/cm | 12 | rt | BT NPs-PDMS | 13.5 | [37] |
150 kV/cm | 1 | 100 | LbL Gr/BT NPs-PVDF | 10 | [39] |
200 kV/cm | 3 | rt | BT NPs-resin | 7 | [42] |
400 (100 *) kV/cm | 4 (2 *) | 120 (50 *) | BT NWs-P(VDF-TrFE) | 14 | [46] |
500 kV/cm | - | - | VA BT NPs-P(VDF-TrFE) | 13.2 | [40] |
1 kV | 12 | 120 | BT NWs-BT NPs-PDMS | 60 | [58] |
1.5 kV | 12 | 140 | BT NWs-PDMS | 7 | [43] |
2 kV | 8 | rt | BT NPs-PVDF | 150 | [38] |
2 kV | 12 | 130 | BT NCr-M13 virus-PDMS | 6 | [57] |
5 kV | 24 | 80 | fibres made of BT NPs-PVDF | 8 | [52] |
8 kV | 24 | rt | BT NCs-PDMS | 126.3 | [55] |
8 kV | 24 | rt | BT NCs-PVDF | 11.9 | [56] |
15 kV | 4 | rt | VA of BT NTs, PDMS | 10.6 | [53] |
References
- Fang, H.; Li, Q.; He, W.; Li, J.; Xue, Q.; Xu, C.; Zhang, L.; Ren, T.; Dong, G.; Chan, H.L.W.; et al. A High Performance Triboelectric Nanogenerator for Self-powered Non-volatile Ferroelectric Transistor Memory. Nanoscale 2015, 7, 17306–17311. [Google Scholar] [CrossRef]
- Gu, L.; Cui, N.; Cheng, L.; Xu, Q.; Bai, S.; Yuan, M.; Wu, W.; Liu, J.; Zhao, Y.; Ma, F.; et al. Flexible Fibre Nanogenerator with 209 V Output Voltage Directly Powers a Light-emitting Diode. Nano Lett. 2013, 13, 91–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briscoe, J.; Jalali, N.; Woolliams, P.; Stewart, M.; Weaver, P.M.; Cain, M.; Dunn, S. Measurement Techniques for Piezoelectric Nanogenerators. Energy Environ. Sci. 2013, 6, 3035–3045. [Google Scholar] [CrossRef]
- Wang, X. Piezoelectric Nanogenerators Harvesting Ambient Mechanical Energy at the Nanometer Scale. Nano Energy 2012, 1, 13–24. [Google Scholar] [CrossRef]
- Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z.L. Self-powered Nanowire Devices. Nat. Nano 2010, 5, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Zhang, X.-S.; Meng, B.; Liu, W.; Tang, W.; Sun, X.; Wang, W.; Zhang, H. R-shaped Hybrid Nanogenerator with Enhanced Piezoelectricity. ACS Nano 2013, 7, 8554–8560. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Yang, Y.; Wang, Z.L. Hybrid Energy Cell for Harvesting Mechanical Energy from One Motion Using Two Approaches. Nano Energy 2015, 11, 162–170. [Google Scholar] [CrossRef]
- Yang, R.; Qin, Y.; Li, C.; Dai, L.; Wang, Z.L. Characteristics of Output Voltage and Current of Integrated Nanogenerators. Appl. Phys. Lett. 2009, 94, 022905. [Google Scholar] [CrossRef]
- Bowen, C.R.; Kim, H.A.; Weaver, P.M.; Dunn, S. Piezoelectric and Ferroelectric Materials and Structures for Energy Harvesting Applications. Energy Environ. Sci. 2014, 7, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in Triboelectric Nanogenerators as a New Energy Technology and Self-powered Sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Mao, Y.; Geng, D.; Liang, E.; Wang, X. Single-electrode Triboelectric Nanogenerator for Scavenging Friction Energy from Rolling Tires. Nano Energy 2015, 15, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High Performance Piezoelectric Devices Based on Aligned Arrays of Nanofibres of Poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, M.; Lantgios, I.; Hornbostel, K. A Review of Ceramic, Polymer and Composite Piezoelectric Materials. J. Phys. D Appl. Phys. 2022, 55, 423002. [Google Scholar] [CrossRef]
- Trolier-McKinstry, S.; Muralt, P. Thin Film Piezoelectrics for MEMS. J. Electroceram. 2004, 12, 7–17. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, X.; Lai, C.W.; Wang, J.; Tang, X.G.; Dai, J.Y. Synthesis and Piezoresponse of Highly Ordered Pb(Zr0.53Ti0.47)O3 Nanowire Arrays. Appl. Phys. Lett. 2004, 85, 4190–4192. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Yang, R.; Wang, S.; Wang, Z.L. Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Lett. 2010, 10, 3151–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.-I.; Xu, S.; Liu, Y.; Hwang, G.-T.; Kang, S.-J.L.; Wang, Z.L.; Lee, K.J. Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates. Nano Lett. 2010, 10, 4939–4943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.-T.; Song, J.; Tsai, C.-M.; Lee, W.-F.; Lien, D.-H.; Gao, Z.; Hao, Y.; Chen, L.-J.; Wang, Z.L. Single-InN-Nanowire Nanogenerator with up to 1 V Output Voltage. Adv. Mater. 2010, 22, 4008–4013. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Bai, S.; Yuan, M.; Qin, Y.; Wang, Z.L.; Jing, T. Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self powered Devices. ACS Nano 2012, 6, 6231–6235. [Google Scholar] [CrossRef]
- Cheng, L.-Q.; Li, J.-F. A Review on One Dimensional Perovskite Nanocrystals for Piezoelectric Applications. J. Mater. 2016, 2, 25036. [Google Scholar] [CrossRef] [Green Version]
- Panda, P.K. Review: Environmental Friendly Lead-Free Piezoelectric Materials. J. Mater. Sci. 2009, 44, 5049–5062. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Khassaf, H.; Alpay, S.P. Strain Engineered Barium Strontium Titanate for Tunable Thin Film Resonators. J. Mater. Sci. 2014, 49, 5978–5985. [Google Scholar] [CrossRef]
- Fraga, M.A.; Furlan, H.; Pessoa, R.S.; Massi, M. Wide Bandgap Semiconductor Thin Films for Piezoelectric and Piezoresistive MEMS Sensors Applied at High Temperatures: An Overview. Microsyst. Technol. 2013, 20, 9–21. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy Harvesting Vibration Sources for Microsystems Applications. Meas. Sci. Technol. 2006, 17, R175–R195. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Neese, B.; Zhang, Q.M.; Huang, C.; West, J. High Piezoelectric Responses in P(VDF-HFP) Copolymers for Sensors and Transducers. In Proceedings of the 2007 IEEE Ultrasonics Symposium Proceedings, New York, NY, USA, 28–31 October 2007; pp. 2606–2609. [Google Scholar] [CrossRef]
- Kumar, B.; Kim, S.-W. Recent Advances in Power Generation through Piezoelectric Nanogenerators. J. Mater. Chem. 2011, 21, 18946. [Google Scholar] [CrossRef]
- Briscoe, J.; Dunn, S. Piezoelectric Nanogenerators—A Review of Nanostructured Piezoelectric Energy Harvesters. Nano Energy 2015, 14, 15–29. [Google Scholar] [CrossRef]
- Indira, S.S.; Vaithilingam, C.A.; Oruganti, K.S.P.; Mohd, F.; Rahman, S. Nanogenerators as a Sustainable Power Source: State of Art, Applications, and Challenges. Nanomaterials 2019, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Clementi, G.; Cottone, F.; Di Michele, A.; Gammaitoni, L.; Mattarelli, M.; Perna, G.; López-Suárez, M.; Baglio, S.; Trigona, C.; Neri, I. Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting. Energies 2022, 15, 6227. [Google Scholar] [CrossRef]
- Park, K.-I.; Jeong, C.K.; Kim, N.K.; Lee, K.J. Stretchable Piezoelectric Nanocomposite Generator. Nano Converg. 2016, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Yue, R.; Ramaraj, S.G.; Liu, H.; Elamaran, D.; Elamaran, V.; Gupta, V.; Arya, S.; Verma, S.; Satapathi, S.; Hayawaka, Y.; et al. A Review of Flexible Lead-free Piezoelectric Energy Harvester. J. Alloys Compd. 2022, 918, 165653. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, I.A. BaTiO3-based Nanogenerators: Fundamentals and Current Status. J. Electroceram. 2022, 48, 8–34. [Google Scholar] [CrossRef]
- Schädli, G.N.; Büchel, R.; Pratsinis, S.E. Nanogenerator Power Output: Influence of Particle Size and Crystallinity of BaTiO3. Nanotechnology 2017, 28, 275705. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-H.; Kim, Y.-H.; Lee, M.H.; Jung, J.-Y.; Nah, J. Hemispherically Aggregated BaTiO3 Nanoparticle Composite Thin Film for High-Performance Flexible Piezoelectric Nanogenerator. ASC Nano 2014, 8, 2766. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-H.; Kim, Y.-H.; Jung, J.-Y.; Lee, M.H.; Nah, J. Solvent-assisted Optimal BaTiO3 Nanoparticles-polymer Composite Cluster Formation for High Performance Piezoelectric Nanogenerators. Nanotechnology 2014, 25, 485401. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, K.Y.; Hwang, S.K.; Park, C.; Kim, S.W.; Cho, J. Layer-by-Layer Controlled Perovskite Nanocomposite Thin Films for Piezoelectric Nanogenerators. Adv. Funct. Mater. 2014, 24, 626. [Google Scholar] [CrossRef]
- Suo, G.; Yu, Y.; Zhang, Z.; Wang, S.; Zhao, P.; Li, J.; Wang, X. Piezoelectric and Triboelectric Dual Effects in Mechanical Energy Harvesting Using BaTiO3/Polydimethylsiloxane Composite Film. ACS Appl. Mater. Interfaces 2016, 8, 34335. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liao, Q.; Zhang, G.; Zhang, Z.; Liang, Q.; Liao, X.; Zhang, Y. High Output Piezoelectric Nanocomposite Generators Composed of Oriented BaTiO3 NPs@PVDF. Nano Energy 2015, 11, 719–727. [Google Scholar] [CrossRef]
- Yaqoob, U.; Uddin, A.S.M.I.; Chung, G.-S. A Novel Tri-layer Flexible Piezoelectric Nanogenerator Based on Surface- modified Graphene and PVDF-BaTiO3 Nanocomposites. Appl. Surf. Sci. 2017, 405, 420–426. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Shao, J.; An, N.; Tian, H.; Wang, C.; Han, T.; Wang, L.; Lu, B. High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO3 Nanocomposite Micropillars for Self-Powered Flexible Sensors. Small 2017, 13, 1604245. [Google Scholar] [CrossRef]
- Park, K.; Lee, M.; Liu, Y.; Moon, S.; Hwang, G.-T.; Zhu, G.; Kim, J.E.; Kim, S.O.; Kim, D.K.; Wang, Z.L.; et al. Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons. Adv. Mater. 2012, 24, 2999–3004. [Google Scholar] [CrossRef]
- Lim, J.; Jung, H.; Baek, C.; Hwang, G.-T.; Ryu, J.; Yoon, D.; Yoo, J.; Park, K.; Kim, J.H. All-inkjet-printed Flexible Piezoelectric Generator Made of Solvent Evaporation Assisted BaTiO3 Hybrid Material. Nano Energy 2017, 41, 337–343. [Google Scholar] [CrossRef]
- Park, K.; Bae, S.B.; Yang, S.H.; Lee, H.; Lee, K.; Lee, S.J. Lead-free BaTiO3 Nanowires-based Flexible Nanocomposite Generator. Nanoscale 2014, 6, 8962–8968. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, T.; Wang, J.; Liao, J.; Qiu, Y.; Xuen, H.; Shi, Z.; Xiong, Z.; Chen, L. Single BaTiO3 Nanowires-polymer Fiber Based Nanogenerator. Nano Energy 2015, 11, 510–517. [Google Scholar] [CrossRef]
- Guo, W.; Tan, C.; Shi, K.; Li, J.; Wang, X.-X.; Sun, B.; Huang, X.; Long, Y.-Z.; Jiang, P. Wireless Piezoelectric Devices Based on Electrospun PVDF/BaTiO3 NW Nanocomposite Fibers for Human Motion Monitoring. Nanoscale 2018, 10, 17751. [Google Scholar] [CrossRef]
- Jeong, C.K.; Baek, C.; Kingon, A.I.; Park, K.-I.; Kim, S.-H. Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester. Small 2018, 14, 17040. [Google Scholar] [CrossRef]
- Malakooti, M.H.; Julé, F.; Sodano, H.A. Printed Nanocomposite Energy Harvesters with Controlled Alignment of Barium Titanate Nanowires. ACS Appl. Mater. Interfaces 2018, 10, 38359. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Wang, F.; Lin, A.; Xu, Q.; Yang, Z.; Qin, Y. Flexible Nanogenerator Based on Single BaTiO3 Nanowire. Sci. Adv. Mater. 2013, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Jeong, Y.G. High Performance Flexible Piezoelectric Nanogenerators Based on BaTiO3 Nanofibers in Different Alignment Modes. ACS Appl. Mater. Interfaces 2016, 8, 15700–15709. [Google Scholar] [CrossRef]
- Siddiqui, S.; Kim, D.; Roh, E.; Duy, L.T.; Trung, T.Q.; Nguyen, M.T.; Lee, N.-E. A Durable and Stable Piezoelectric Nanogenerator with Nanocomposite Nanofibers Embedded in an Elastomer Under High Loading for a Self-powered Sensor System. Nano Energy 2016, 30, 434–442. [Google Scholar] [CrossRef]
- Shi, K.; Sun, B.; Huang, X.; Jiang, P. Synergistic Effect of Graphene Nanosheet and BaTiO3 Nanoparticles on Performance Enhancement of Electrospun PVDF Nanofiber Mat for Flexible Piezoelectric Nanogenerators. Nano Energy 2018, 52, 153. [Google Scholar] [CrossRef]
- Lu, X.; Qu, H.; Skorobogatiy, M. Piezoelectric Microstructured Fibers via Drawing of Multimaterial Preforms. Sci. Rep. 2017, 7, 2907. [Google Scholar] [CrossRef]
- Tsege, E.L.; Kim, G.H.; Annapureddy, V.; Kim, B.; Kim, H.-K.; Hwang, Y.-H. A Flexible Lead-free Piezoelectric Nanogenerator Based on Vertically Aligned BaTiO3 Nanotube Arrays on a Ti-mesh Substrate. RSC Adv. 2016, 6, 81426–81435. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Yang, Y.; Wu, J.M.; Liu, Y.; Zhang, F.; Wang, Z.L. BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. Phys. Chem. Lett. 2012, 3, 3599–3604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alluri, N.R.; Chandrasekhar, A.; Vivekananthan, V.; Purusothaman, Y.; Selvarajan, S.; Jeong, J.H.; Kim, S.-J. Scavenging Biomechanical Energy Using High-Performance, Flexible BaTiO3 Nanocube/PDMS Composite Films. ACS Sustain. Chem. Eng. 2017, 5, 4730. [Google Scholar] [CrossRef]
- Alluri, N.R.; Saravanakumar, B.; Kim, S.-J. Flexible, Hybrid Piezoelectric Film (BaTi(1−x)ZrxO3)/PVDF Nanogenerator as a Self-powered Fluid Velocity Sensor. ACS Appl. Mater. Interfaces 2015, 7, 9831. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.K.; Kim, I.; Park, K.-I.; Oh, M.H.; Paik, H.; Hwang, G.-T.; No, K.; Nam, Y.S.; Lee, K.J. Virus-Directed Design of a Flexible BaTiO3 Nanogenerator. ACS Nano 2013, 7, 11016. [Google Scholar] [CrossRef]
- Baek, C.; Yun, J.H.; Wang, H.S.; Wang, J.E.; Park, H.; Park, K.-I.; Kim, D.K. Enhanced Output Performance of a Lead-free Nanocomposite Generator Using BaTiO3 Nanoparticles and Nanowires Filler. Appl. Surf. Sci. 2018, 429, 164–170. [Google Scholar] [CrossRef]
- Takahashi, R.; Lippmaa, M. A Sacrificial Water-soluble BaO Layer for Fabricating Free-standing Piezoelectric Membranes. ACS Appl. Mater. Interfaces 2020, 12, 25042–25049. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Tan, K.; Wolf, A.; Carbary, L. 4—Advances in Structural Silicone Adhesives. In Advances in Structural Adhesive Bonding; Dillard, D.A., Ed.; Woodhead Publishing in Materials: Cambridge, UK, 2010; pp. 66–95. [Google Scholar] [CrossRef]
- Jeong, C.K.; Lee, J.H.; Hyeon, D.Y.; Kim, Y.-G.; Kim, S.; Baek, C.; Lee, G.-J.; Lee, M.-K.; Park, J.-J.; Park, K.-I. Piezoelectric Energy Conversion by Lead-free Perovskite BaTiO3 Nanotube Arrays Fabricated Using Electrochemical Anodization. Appl. Surf. Sci. 2020, 512, 144784. [Google Scholar] [CrossRef]
- Pongampai, S.; Charoonsuk, T.; Pinpru, N.; Muanghlua, R.; Vittayakorn, W.; Vittayakorn, N. High Performance Flexible Tribo/Piezoelectric Nanogenerators Based on BaTiO3/Chitosan Composites. Integr. Ferroelectr. 2022, 223, 137–151. [Google Scholar] [CrossRef]
- Yao, M.; Li, L.; Wang, Y.; Yang, D.; Miao, L.; Wang, H.; Liu, M.; Ren, K.; Fan, H.; Hu, D. Mechanical Energy Harvesting and Specific Potential Distribution of a Flexible Piezoelectric Nanogenerator Based on 2-D BaTiO3-oriented Polycrystals. ACS Sustain. Chem. Eng. 2022, 10, 3276–3287. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive Phases of Poly(vinylidene fluoride): Determination, Processing and Applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Zhang, H.; Jeong, C.K.; Shen, Z.; Wang, J.; Sun, H.; Jian, Z.; Chen, W.; Zhang, Y. Ultrahigh Augmentation of Flexible Composite-based Piezoelectric Energy Harvesting Efficiency via Polymer-impregnated Nanoparticles Network within 3D Cellulose Scaffold. Compos. B Eng. 2022, 236, 109813. [Google Scholar] [CrossRef]
- Shi, K.; Chai, B.; Zou, H.; Shen, P.; Sun, B.; Jiang, P.; Shi, Z.; Huang, X. Interface Induced Performance Enhancement in Flexible BaTiO3/PVDF-TrFE Based Piezoelectric Nanogenerators. Nano Energy 2021, 80, 105515. [Google Scholar] [CrossRef]
- Hazra, S.; Ghatak, A.; Ghosh, A.; Sengupta, S.; Raychaudhuri, A.K.; Ghosh, B. Enhanced Piezoelectric Response in BTO NWs-PVDF Composite Through Tuning of Polar Phase Content. Nanotechnology 2023, 34, 045405. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, H.; Xie, G.; Jiang, Y.; Chen, C.; Su, Y.; Wang, Y.; Tai, H. Flexible Piezoelectric Pressure Sensor Based on Polydopamine-modified BaTiO3/PVDF Composite Film for Human Motion Monitoring. Sens. Actuators A Phys. 2020, 301, 111789. [Google Scholar] [CrossRef]
- Guan, X.; Xu, B.; Gong, J. Hierarchically Architected Polydopamine Modified BaTiO3@P(VDF-TrFE) Nanocomposite Fiber Mats for Flexible Piezoelectric Nanogenerators and Self-powered Sensors. Nano Energy 2020, 70, 104516. [Google Scholar] [CrossRef]
- Uddin, A.S.M.I.; Lee, D.; Cho, C.; Kim, B. Impact of Multi-Walled CNT Incorporation on Dielectric Properties of PVDF-BaTiO3 Nanocomposites and Their Energy Harvesting Possibilities. Coatings 2022, 12, 77. [Google Scholar] [CrossRef]
Piezoelectric Coefficient, pm/V | PZT | BaTiO3 | ZnO | AlN | PVFD | P(VDF-TrFE) | P(VDF-HFP) |
---|---|---|---|---|---|---|---|
|d33| | ~60–593 | ~149–350 | ~5.9–44 | ~3.9–5.15 | ~25.8 | ~33.5 | ~32 |
|d31| | ~120–274 | ~78 | ~5 | ~2 | ~22.4 | ~10.7 | ~43.1 |
Work Layer | Work Area, cm2 (Thickness, μm) | Output Voltage, V | Working Mode | Ref. |
---|---|---|---|---|
Horizontal single BT NW covered by PDMS | - (≤0.35) | 0.21 | bending/stretching, 20 mm bending amplitude | [48] |
Horizontal single fibre made of BT NWs-PVC | - (0.3) | 0.9 | bending/releasing | [44] |
Horizontal BT NFs in PDMS | 0.17 × 0.07 (650) | 1.48 | pressure 2 kPa | [49] |
VA BT NFs in PDMS | 0.17 × 0.09 (670) | 2.67 | pressure 2 kPa | [49] |
VA BT NTs encapsulated by PDMS | 1 × 1 (≤7) | 10.6 | bending/releasing, bending angle 70° | [53] |
VA BT NPs-P(VDF-TrFE) covered by PDMS | 1 (60) | 13.2 | force 50 N | [40] |
Type of BaTiO3 (Size, nm) | Work Layer | Area, cm2 (Thickness, μm) | Bottom Layer|| Top Layer | Output Voltage, V | Output Current, μA | Type of Working Mode | Ref. |
---|---|---|---|---|---|---|---|
film | BT/SrTiO3 film | 0.4 × 0.6 (0.2) | PET/ITO/PDMS|| PDMS/ITO/PET | 1.5 | - | vibration | [59] |
film | BT film | 0.82 (0.3) | Kapton/PDMS||PDMS | 1 | 0.026 | bending | [17] |
Oriented NPs | BT NCs-PDMS | 4 × 4 (-) | PET/Cu||Cu/PET | 13 | 0.02 | bending | [63] |
NCr (≤100) | BT NCr-M13 virus-PDMS | 2.5 × 2.5 (200) | PET/ITO/PDMS|| ITO/PET | 6 | 0.3 | bending | [57] |
NCs (≤400) | BT NCs-PDMS | 4.4 × 4.6 (790) | Kapton/Al||Al/Kapton | 126.3 | 77.6 | constant mechanical pressure ~0.001 MPa at fixed acceleration of 1 m/s2 | [55] |
NFs (∅354) | vertical BT NFs-PDMS | 0.17 × 0.09 (670) | PET/ITO||ITO/PET | 2.67 | 0.26 | pressure 0.002 MPa | [49] |
NFs (∅354) | BT NFs-PDMS | 0.17 × 0.07 (650) | PET/ITO||ITO/PET | 1.48 | 0.1 | pressure 0.002 MPa | [49] |
NFs (∅354) | BT NFs-PDMS | 0.17 × 0.13 (430) | PET/ITO||ITO/PET | 0.56 | 0.058 | pressure 0.002 MPa | [49] |
NTs (∅50) | vertical BT NTs-PDMS | 1 × 1 (≤7) | PET/ITO|| PDMS/ITO/PET | 10.6 | 1.1 | bending/releasing, angle 70° | [53] |
NTs (∅130) | vertical BT NTs-PDMS | 2 × 3 (15) | Al||Ti/PET | 1 | 0.02 | bending | [61] |
NTs (∅11) | BT NTs-PDMS | 1 × 1 (300) | PS/Au/Cr||Au/Cr/PDMS | 5.5 | 0.35 | pressure 1 MPa | [54] |
NWs (≤∅350) | BT NW-PDMS | (0.35) | PET/Ag||Ag/PDMS | 0.21 | 0.0013 | bending | [48] |
NWs (∅156) | BT NWs-PDMS | 3 × 3 (250) | PET/ITO/PDMS|| PDMS/ITO/PET | 7 | 0.36 | bending | [43] |
NWs (∅300) | fibres made of BT NWs-PVC | (0.3) | PET/PDMS||Ag/Kapton | 0.9 | 0.01 | bending | [44] |
NPs, NWs | BT NWs-BT NPs-PDMS | 3.5 × 3.5 (300) | PET/ITO/PDMS|| PDMS/ITO/PET | 60 | 1.1 | 5 mm displacement, rate 0.2 m/s | [58] |
NPs (∅200) | BT NPs-PDMS | 1 × 1 (200) | PET/Cu||ITO/PET | 13.5 | - | cantilever-type device, compressive force at 20 Hz | [37] |
NPs (150) | BT NPs-resin | 3 × 4 (~15) | Plastic/Ag||Ag/epoxy | 7 | 2.5 | strain 0.236%, rate 3.54%/s | [42] |
NPs (20) | OA-BT NPs-PAA | 1 (≤200) | Plastic/ITO||Al | 1.8 | 0.7 | force 51 N | [36] |
NPs | BT NPs-chitosan | 3 × 3 (160) | PET/Al||Al/PET | 40.9 | 4.5 | pressed/releasing | [62] |
NPs (~100) | BT NPs-CNT-PDMS | 5 × 7 (<300) | Kapton/Au-Cr|| PDMS/Au-Cr/Kapton | 3.2 | 0.35 | 5 mm displacement, rate 0.2 m/s, strain 0.33% | [41] |
Type of BaTiO3 (Size, nm) | Work Layer | Area, cm2 (Thickness, µm) | Bottom Layer||Top Layer | Output Voltage, V | Output Current, μA | Working Mode | Ref. |
---|---|---|---|---|---|---|---|
NCs | BT NCs-PVDF | 2.5 × 2.5 (~220) | PDMS/Al||Al/PDMS | 7.99 | 1.01 | pushing- releasing, force 11 N | [56] |
NWs | BT NWs-PMMA-PVDF-TrFE | 2.5 × 2.5 (20) | PET/Al||Al/PET | 12.6 | 1.3 | bending | [66] |
NWs (∅150) | BT NWs-P(VDF-TrFE) | 2 × 2 (50) | PET/ITO||Ti/Au | 14 | 4 | bending | [46] |
NWs (∅170) | BT NWs-PVDF | - | In-Ag||Kapton | 2 | - | - | [67] |
NWs (∅250) | BT NWs-PLA | 1 × 4.5100 (100) | Stainless steel||Au | 1.4 | - | strain 0.35% | [47] |
NWs (∅270) | fibres made of BT NWs-PVDF | 3.5 × 3.5 | Al||Al | 0.7 | - | pressure 0.04 MPa | [45] |
NPs | BT NPs-PDA-PVDF | 2.6 × 2.3 (36–42) | Al||Al | 9.3 | 0.086 | force 12 N | [68] |
NPs | fibres made of BT NPs-PDA-PVDF-TrFE | 2.5 × 2.5 (0.059) | Cu-Ni-fabric|| Cu-Ni-fabric | 6 | 1.5 | force 700 N at 3 Hz | [69] |
NPs | BT-NPs-Cell-PVDF-TrFE | 0.7 × 0.5 (100) | Au||Au | 60 | - | bending | [65] |
NPs | fibres made of BT NPs-Gr-PVDF | 2.5 × 2.5 (19) | PET/Al||Al/PET | 11 | - | strain 4 mm at 2 Hz | [51] |
NPs | BT NPs-MWCNT-PVDF | 3 × 1 (50) | PET/Al||Al/PET | 4.4 | 0.66 | force 2 N | [70] |
NPs (50) | BT NPs-P(VDF-HFP) | 0.785 (30) | Kapton/Al/PDMS|| PDMS/Al/Kapton | 1.4 | - | bending | [33] |
NPs (100) | LbL Gr/BT NPs-PVDF | 4 × 2 (60) | PET/ITO/Ag||Au/PET | 10 | 2.5 | force 2 N | [39] |
NPs (100) | fibres made of BT NPs-P(VDF-TrFE) | 0.785 (90) | PET/ITO||ITO/PET | 12.46 | 3.65 | force 20 N | [50] |
NPs (100) | fibres made of BT NPs-P(VDF-TrFE) | 0.785 (90) | PET/ITO||PDMS/ITO/PET | 3.4 | 0.523 | force 20 N | [50] |
NPs (150) | fibre array of BT NPs-PVDF | 1 × 1 (60) | PET/ITO||ITO/PET | 35 (or 150) | 0.6 (or 1.5) | pressure 1 MPa (or at 10 MPa) | [38] |
NPs (200) | fibres made of BT NPs-PVDF | (100) | PS/Kapton/C-LDPE|| C-LDPE | 8 | 0.05 | bending | [52] |
NPs (200) | BT NPs-P(VDF-HFP) | 2.2 (50) | PI/Al/PDMS||Al/PI | 110 | 22 | normal to surface, pressure 0.23 MPa | [34] |
NPs (200) | BT NPs-P(VDF-HFP) | 2.2 (50) | PI/Al/PDMS||Al/PI | 5 | 0.75 | bending | [34] |
NPs (200) | vertical array of BT NPs-P(VDF-TrFE) | 1 (60) | Kapton/Au||MWCNT | 13.2 | 0.3 | force 50 N | [40] |
Applied Field, kV/cm | Time, h | Temperature, °C | Piezoelectric Composite | Output Voltage, V | Ref. | |
---|---|---|---|---|---|---|
Before Poling | After Poling | |||||
5 | 24 | 80 | BT NPs-PVDF fibre | ~0 | 1 | [52] |
5 | 12 | 120 | VA-BT NFs-PDMS | 0.2 | 5 | [49] |
15 | 12 | 140 | BT NWs-PDMS | ~0 | 7 | [40] |
100 | 20 | - | BT NPs-P(VDF-HFP) | 0.5 | 1.2 | [33] |
100 | 20 | 150 | BT NPs-CNT-PDMS | 0.2 | 3.2 | [41] |
120 | 12 | - | BT NPs-PDMS | 9.2 | 13.5 | [37] |
150 | 1 | 100 | n-Gr/BT NPs-PVDF | 1.5 | 10 | [39] |
200 | 3 | - | BT NPs-resin | ~0 | 7 | [42] |
400 | 4 | 120 | BT NWs-P(VDF-TrFE) | 4 | 14 | [46] |
Work Layer | Load Resistance, MΩ | Area, cm2 (Thickness, μm) | Power, µW/Areal Power Density, µW/cm2/Volumetric Power Density, mW/cm3 | Ref. |
---|---|---|---|---|
Gr/BT NPs-PVDF | 1 | 4 × 2 (60) | 5.8/0.73 */0.121 * | [39] |
BT film-PDMS | 1 | 0.4 × 0.6 (0.2) | 2.3/9.6 */480 * | [59] |
BT NPs-resin | 2 | 3 × 4 (~15) | 5/0.42/0.28 * | [42] |
vertical array BT NPs-P(VDF-TrFE) | 3.9 | 1 (60) | 12.7 */12.7/2.1 * | [40] |
fibres BT NPs-PDA-PVDF-TrFE | 5 | 2.5 × 2.5 (59) | 5.5 */0.878/0.15 * | [62] |
vertical array BT NTs-PDMS | 5.2 | 1 × 1 (≤7) | 1 */1/1.4 * | [53] |
fibres BT NPs-Gr-PVDF | 6.9 | 2.5 × 2.5 (19) | 4.1/0.66 */0.35 * | [51] |
BT NWs-PMMA-PVDF-TrFE | 7.2 | 2.5 × 2.5 (20) | 4.25/0.68 */0.34 * | [66] |
BT NWs-PVDF | 9.3 | - | -/1/- | [67] |
vertical BT NFs-PDMS | 10 | 0.17 × 0.09 (670) | 0.184/12 */0.18 * | [49] |
BT NWs-PDMS | 20 | 3 × 3 (250) | 1.2/0.13 */0.0052 * | [43] |
BT NWs-P(VDF-TrFE) | 30 | 2 × 2 (50) | 1.5/0.38 */0.076 * | [46] |
BT NCs-PDMS | 35 | 4 × 4 (-) | 2.6/0.16 */- | [63] |
BT NPs-Cell-PVDF-TrFE | 50 | 0.7 × 0.5 (100) | 0.147 */0.42 */~0.042 | [65] |
BT NPs-PDA-PVDF | 70 | 2.6 × 2.3 (42) | 0.73 */0.122/0.03 * | [68] |
vertical array BT NPs-PDMS | 100 | 2 × 3 (15) | 0.003/0.0005/0.0003 * | [61] |
BT NCs-PDMS | 100 | 4.4 × 4.6 (790) | 16 */0.8/0.00001 * | [55] |
BT NWs-BT NPs-PDMS | 500 | 3.5 × 3.5 (300) | ~40/3.3 */0.0001 * | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhay, O.; Tkach, A. Current Achievements in Flexible Piezoelectric Nanogenerators Based on Barium Titanate. Nanomaterials 2023, 13, 988. https://doi.org/10.3390/nano13060988
Okhay O, Tkach A. Current Achievements in Flexible Piezoelectric Nanogenerators Based on Barium Titanate. Nanomaterials. 2023; 13(6):988. https://doi.org/10.3390/nano13060988
Chicago/Turabian StyleOkhay, Olena, and Alexander Tkach. 2023. "Current Achievements in Flexible Piezoelectric Nanogenerators Based on Barium Titanate" Nanomaterials 13, no. 6: 988. https://doi.org/10.3390/nano13060988