Thermal and Radiation Stability in Nanocrystalline Cu
Abstract
:1. Introduction
2. Grain Size Impact on Stability
3. Grain Growth Regimes in Combined Irradiation/Thermal Environments
4. Grain Boundary Character Controlled through Synthesis and Processing
5. Impact on Mechanical Properties
6. Impact of Radiation Environment
7. Impact of the Collective Findings on Generating New Knowledge
8. Summary and Recommendations
- (a)
- In-depth material preparation studies to understand the effect of the processing method on the damage tolerance. This includes deeper explorations into bulk processing methods that might be suitable for specific radiation environments. Most irradiation-induced grain growth studies have been conducted on thin-film materials. Studying irradiated bulk materials would allow the effect of impurities to be investigated, as well as the removal of the specimen thickness effect.
- (b)
- Deeper studies of impurity content effects to decipher chemical variations on the damage tolerance, focusing on the difference between lab-grown and commercially processed materials.
- (c)
- Exploratory studies on the interplay of primary knock-on atom (PKA) energy, damage cascade, and irradiation temperature effects.
- (d)
- Higher throughput in situ and ex situ testing to study grain growth effects under a wider span of irradiation doses and/or temperatures on the same starting material such that trends can be reported with higher confidence, at least for the chosen irradiation type (ion vs. neutron vs. electron).
- (e)
- Round-robin type of experiments probing single-sourced Cu samples (with constant range of grain sizes) exposed to the same energy and species to help the community focus on specific irradiation condition effects.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zinkle, S.J. Radiation-Induced Effects on Microstructure. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 91–129. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hattar, K.; Chen, Y.; Shao, L.; Li, J.; Sun, C.; Yu, K.; Li, N.; Taheri, M.L.; Wang, H.; et al. Radiation Damage in Nanostructured Materials. Prog. Mater. Sci. 2018, 96, 217–321. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science: Metals and Alloys; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Wolfer, W.G. Fundamental Properties of Defects in Metals. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1–45. [Google Scholar] [CrossRef]
- Was, G.S.; Petti, D.; Ukai, S.; Zinkle, S. Materials for Future Nuclear Energy Systems. J. Nucl. Mater. 2019, 527, 151837. [Google Scholar] [CrossRef]
- Xiao, X. Fundamental Mechanisms for Irradiation-Hardening and Embrittlement: A Review. Metals 2019, 9, 1132. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zinkle, S.J. Physical and Mechanical Properties of Copper and Copper Alloys. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 667–690. [Google Scholar] [CrossRef] [Green Version]
- Ackland, G. Controlling Radiation Damage. Science 2010, 327, 1587–1588. [Google Scholar] [CrossRef] [PubMed]
- Mao, P.; Cui, J.; Chen, Y.; Qiu, J.; Jin, Q.; Qiao, J.; Zhao, Y.; Cui, K.; Gao, N.; Tai, K. Quantitative Investigation on Sink Strength of Nano-Grain Boundary for Irradiation Resistance. J. Nucl. Mater. 2019, 526, 151741. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Yu, K.Y.; Wang, H.; Kirk, M.A.; Li, M.; Zhang, X. In Situ Studies on Radiation Tolerance of Nanotwinned Cu. Acta Mater. 2016, 111, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Kale, C.; Hornbuckle, B.C.; Darling, K.A.; Chancey, M.R.; Hernández-Rivera, E.; Chen, Y.; Koenig, T.R.; Wang, Y.Q.; Thompson, G.B.; et al. Radiation Tolerance and Microstructural Changes of Nanocrystalline Cu-Ta Alloy to High Dose Self-Ion Irradiation. Acta Mater. 2020, 195, 621–630. [Google Scholar] [CrossRef]
- Han, W.; Demkowicz, M.J.; Mara, N.A.; Fu, E.; Sinha, S.; Rollett, A.D.; Wang, Y.; Carpenter, J.S.; Beyerlein, I.J.; Misra, A. Design of Radiation Tolerant Materials Via Interface Engineering. Adv. Mater. 2013, 25, 6975–6979. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Swaminathan, N.; Deng, J.; Morgan, D.; Szlufarska, I. Effect of Grain Boundary Stresses on Sink Strength. Mater. Res. Lett. 2014, 2, 100–106. [Google Scholar] [CrossRef] [Green Version]
- El-Atwani, O.; Martinez, E.; Esquivel, E.; Efe, M.; Taylor, C.; Wang, Y.Q.; Uberuaga, B.P.; Maloy, S.A. Does Sink Efficiency Unequivocally Characterize How Grain Boundaries Impact Radiation Damage? Phys. Rev. Mater. 2018, 2, 113604. [Google Scholar] [CrossRef]
- Beyerlein, I.J.; Demkowicz, M.J.; Misra, A.; Uberuaga, B.P. Defect-Interface Interactions. Prog. Mater. Sci. 2015, 74, 125–210. [Google Scholar] [CrossRef] [Green Version]
- Uberuaga, B.P.; Vernon, L.J.; Martinez, E.; Voter, A.F. The Relationship between Grain Boundary Structure, Defect Mobility and Grain Boundary Sink Efficiency. Sci. Rep. 2015, 5, 9095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinkle, S.J.; Snead, L.L. Designing Radiation Resistance in Materials for Fusion Energy. Annu. Rev. Mater. Res. 2014, 44, 241–267. [Google Scholar] [CrossRef]
- Barr, C.M.; Li, N.; Boyce, B.L.; Hattar, K. Examining the Influence of Grain Size on Radiation Tolerance in the Nanocrystalline Regime. Appl. Phys. Lett. 2018, 112, 181903. [Google Scholar] [CrossRef]
- Nathaniel, J.E.; Suri, P.K.; Hopkins, E.M.; Wen, J.; Baldo, P.; Kirk, M.; Taheri, M.L. Grain Boundary Strain as a Determinant of Localized Sink Efficiency. Acta Mater. 2022, 226, 117624. [Google Scholar] [CrossRef]
- Dollar, M.; Gleiter, H. Point Defect Annihilation at Grain Boundaries in Gold. Scr. Metall. 1985, 19, 481–484. [Google Scholar] [CrossRef]
- Bai, X.-M.; Vernon, L.J.; Hoagland, R.G.; Voter, A.F.; Nastasi, M.; Uberuaga, B.P. Role of Atomic Structure on Grain Boundary-Defect Interactions in Cu. Phys. Rev. B 2012, 85, 214103. [Google Scholar] [CrossRef]
- Han, W.; Fu, E.G.; Demkowicz, M.J.; Wang, Y.; Misra, A. Irradiation Damage of Single Crystal, Coarse-Grained, and Nanograined Copper under Helium Bombardment at 450 °C. J. Mater. Res. 2013, 28, 2763–2770. [Google Scholar] [CrossRef] [Green Version]
- Hatakeyama, M.; Watanabe, H.; Akiba, M.; Yoshida, N. Low Void Swelling in Dispersion Strengthened Copper Alloys under Single-Ion Irradiation. J. Nucl. Mater. 2002, 307–311, 444–449. [Google Scholar] [CrossRef]
- Doan, N.V.; Martin, G. Elimination of Irradiation Point Defects in Crystalline Solids: Sink Strengths. Phys. Rev. B 2003, 67, 134107. [Google Scholar] [CrossRef]
- Kim, H.S.; Estrin, Y.; Bush, M.B. Plastic Deformation Behaviour of Fine-Grained Materials. Acta Mater. 2000, 48, 493–504. [Google Scholar] [CrossRef]
- Beyerlein, I.J.; Caro, A.; Demkowicz, M.J.; Mara, N.A.; Misra, A.; Uberuaga, B.P. Radiation Damage Tolerant Nanomaterials. Mater. Today 2013, 16, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Simões, S.; Calinas, R.; Ferreira, P.J.; Vieira, M.T.; Viana, F.; Vieira, M.F. Effect of Annealing Conditions on the Grain Size of Nanocrystalline Copper Thin Films. Mater. Sci. Forum 2008, 587–588, 483–487. [Google Scholar] [CrossRef]
- Simões, S.; Calinas, R.; Vieira, M.T.; Vieira, M.F.; Ferreira, P.J. In Situ TEM Study of Grain Growth in Nanocrystalline Copper Thin Films. Nanotechnology 2010, 21, 145701. [Google Scholar] [CrossRef] [Green Version]
- Detavernier, C.; Deduytsche, D.; Van Meirhaeghe, R.L.; De Baerdemaeker, J.; Dauwe, C. Room-Temperature Grain Growth in Sputter-Deposited Cu Films. Appl. Phys. Lett. 2003, 82, 1863–1865. [Google Scholar] [CrossRef]
- Liu, J.C.; Mayer, J.W. Ion Irradiation Induced Grain Growth in Ni Polycrystalline Thin Films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1987, 19–20, 538–542. [Google Scholar] [CrossRef]
- Kaoumi, D.; Motta, A.T.; Birtcher, R.C.; Lott, R.; Dean, S.W. Grain Growth in Nanocrystalline Metal Thin Films under In Situ Ion-Beam Irradiation. J. ASTM Int. 2007, 4, 100743. [Google Scholar] [CrossRef]
- Kaoumi, D.; Motta, A.T.; Birtcher, R.C. Influence of Alloying Elements on Grain-Growth in Zr(Fe) and Cu(Fe) Thin-Films under in Situ Ion-Irradiation. J. Nucl. Mater. 2008, 382, 184–189. [Google Scholar] [CrossRef]
- Kaoumi, D.; Motta, A.T.; Birtcher, R.C. A Thermal Spike Model of Grain Growth under Irradiation. J. Appl. Phys. 2008, 104, 073525. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, W.; Miller, B.; Porter, D.; Murty, K. The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper. Materials 2016, 9, 144. [Google Scholar] [CrossRef] [Green Version]
- Bufford, D.C.; Abdeljawad, F.F.; Foiles, S.M.; Hattar, K. Unraveling Irradiation Induced Grain Growth with in Situ Transmission Electron Microscopy and Coordinated Modeling. Appl. Phys. Lett. 2015, 107, 191901. [Google Scholar] [CrossRef] [Green Version]
- Børgesen, P.; Lilienfeld, D.A.; Msaad, H. Radiation Induced Grain Growth in Transition Metals. MRS Online Proc. Libr. 1990, 201, 393. [Google Scholar] [CrossRef]
- Atwater, H.A.; Thompson, C.V.; Smith, H.I. Ion-bombardment-enhanced Grain Growth in Germanium, Silicon, and Gold Thin Films. J. Appl. Phys. 1988, 64, 2337–2353. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yu, K.Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M.A.; Wang, J.; Zhang, X. Damage-Tolerant Nanotwinned Metals with Nanovoids under Radiation Environments. Nat. Commun. 2015, 6, 7036. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Li, Q.; Ding, J.; Liang, Y.; Shang, Z.; Li, J.; Su, R.; Cho, J.; Chen, D.; Wang, Y.; et al. Helium Irradiation Induced Ultra-High Strength Nanotwinned Cu with Nanovoids. Acta Mater. 2019, 177, 107–120. [Google Scholar] [CrossRef]
- Sun, C.; Song, M.; Yu, K.Y.; Chen, Y.; Kirk, M.; Li, M.; Wang, H.; Zhang, X. In Situ Evidence of Defect Cluster Absorption by Grain Boundaries in Kr Ion Irradiated Nanocrystalline Ni. Metall. Mater. Trans. A 2013, 44, 1966–1974. [Google Scholar] [CrossRef]
- Bai, X.-M.; Voter, A.F.; Hoagland, R.G.; Nastasi, M.; Uberuaga, B.P. Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission. Science 2010, 327, 1631–1634. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.; Chen, T.; Shao, L. Defect Annihilation at Grain Boundaries in Alpha-Fe. Sci. Rep. 2013, 3, 1450. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L. Understanding the Radiation Resistance Mechanisms of Nanocrystalline Metals from Atomistic Simulation. Metals 2021, 11, 1875. [Google Scholar] [CrossRef]
- Chimi, Y.; Iwase, A.; Ishikawa, N.; Kobiyama, M.; Inami, T.; Okuda, S. Accumulation and Recovery of Defects in Ion-Irradiated Nanocrystalline Gold. J. Nucl. Mater. 2001, 297, 355–357. [Google Scholar] [CrossRef]
- Chimi, Y.; Iwase, A.; Ishikawa, N.; Kobiyama, M.; Inami, T.; Kambara, T.; Okuda, S. Swift Heavy Ion Irradiation Effects in Nanocrystalline Gold. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2006, 245, 171–175. [Google Scholar] [CrossRef]
- Atwater, H.A.; Brown, W.L. Grain Boundary Mediated Amorphization in Silicon during Ion Irradiation. Appl. Phys. Lett. 1990, 56, 30–32. [Google Scholar] [CrossRef]
- Barr, C.M.; El-Atwani, O.; Kaoumi, D.; Hattar, K. Interplay Between Grain Boundaries and Radiation Damage. JOM 2019, 71, 1233–1244. [Google Scholar] [CrossRef]
- Shen, T.D. Radiation Tolerance in a Nanostructure: Is Smaller Better? Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 266, 921–925. [Google Scholar] [CrossRef]
- Peng, H.R.; Gong, M.M.; Chen, Y.Z.; Liu, F. Thermal Stability of Nanocrystalline Materials: Thermodynamics and Kinetics. Int. Mater. Rev. 2017, 62, 303–333. [Google Scholar] [CrossRef]
- Liu, J.C.; Li, J.; Mayer, J.W. Temperature Effect on Ion-irradiation-induced Grain Growth in Cu Thin Films. J. Appl. Phys. 1990, 67, 2354–2358. [Google Scholar] [CrossRef]
- Nita, N.; Schaeublin, R.; Victoria, M. Impact of Irradiation on the Microstructure of Nanocrystalline Materials. J. Nucl. Mater. 2004, 329–333, 953–957. [Google Scholar] [CrossRef]
- Dille, J.; Delplancke, J.-L.; Charlier, J.; Winand, R. Room Temperature Recrystallization of Nanocrystalline Thin Copper Foils. MRS Online Proc. Libr. 1994, 362, 231. [Google Scholar] [CrossRef]
- Hillert, M. On the Theory of Normal and Abnormal Grain Growth. Acta Metall. 1965, 13, 227–238. [Google Scholar] [CrossRef]
- Balluffi, R.W.; Allen, S.M.; Carter, W.C. Kinetics of Materials, 1st ed.; Wiley: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Cole, D.G.; Feltham, P.; Gillam, E. On the Mechanism of Grain Growth in Metals, with Special Reference to Steel. Proc. Phys. Soc. Sect. B 1954, 67, 131–137. [Google Scholar] [CrossRef]
- Alexander, D.E.; Was, G.S. Thermal-Spike Treatment of Ion-Induced Grain Growth: Theory and Experimental Comparison. Phys. Rev. B 1993, 47, 2983–2994. [Google Scholar] [CrossRef] [PubMed]
- Voegeli, W.; Albe, K.; Hahn, H. Simulation of Grain Growth in Nanocrystalline Nickel Induced by Ion Irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 202, 230–235. [Google Scholar] [CrossRef]
- Samaras, M.; Derlet, P.M.; Van Swygenhoven, H.; Victoria, M. Computer Simulation of Displacement Cascades in Nanocrystalline Ni. Phys. Rev. Lett. 2002, 88, 125505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barr, C.M.; Chen, E.Y.; Nathaniel, J.E.; Lu, P.; Adams, D.P.; Dingreville, R.; Boyce, B.L.; Hattar, K.; Medlin, D.L. Irradiation-Induced Grain Boundary Facet Motion: In Situ Observations and Atomic-Scale Mechanisms. Sci. Adv. 2022, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, J.C.; Mayer, J.W. Ar+ Ion Irradiation Induced Grain Growth in Au and Pt Thin Films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1989, 36, 306–311. [Google Scholar] [CrossRef]
- Seita, M.; Schäublin, R.; Döbeli, M.; Spolenak, R. Selective Ion-Induced Grain Growth: Thermal Spike Modeling and Its Experimental Validation. Acta Mater. 2013, 61, 6171–6177. [Google Scholar] [CrossRef]
- Liu, J.C.; Nastasi, M.; Mayer, J.W. Ion Irradiation Induced Grain Growth in Pd Polycrystalline Thin Films. J. Appl. Phys. 1987, 62, 423–428. [Google Scholar] [CrossRef]
- Singh, P.S.; Chen, D.; Shao, L.; Picard, Y.N.; de Boer, M.P. Grain Growth Stagnation and Texture Development in an Irradiated Thermally Stabilized Nanocrystalline Alloy. J. Appl. Phys. 2019, 126, 175901. [Google Scholar] [CrossRef]
- Mullins, W.W. The Effect of Thermal Grooving on Grain Boundary Motion. Acta Metall. 1958, 6, 414–427. [Google Scholar] [CrossRef]
- Frost, H.J.; Thompson, C.V.; Walton, D.T. Simulation of Thin Film Grain Structures—I. Grain Growth Stagnation. Acta Metall. Mater. 1990, 38, 1455–1462. [Google Scholar] [CrossRef]
- Jin, M.; Cao, P.; Short, M.P. Mechanisms of Grain Boundary Migration and Growth in Nanocrystalline Metals under Irradiation. Scr. Mater. 2019, 163, 66–70. [Google Scholar] [CrossRef]
- Misra, A.; Demkowicz, M.J.; Zhang, X.; Hoagland, R.G. The Radiation Damage Tolerance of Ultra-High Strength Nanolayered Composites. JOM 2007, 59, 62–65. [Google Scholar] [CrossRef]
- El-Atwani, O.; Esquivel, E.; Aydogan, E.; Martinez, E.; Baldwin, J.K.; Li, M.; Uberuaga, B.P.; Maloy, S.A. Unprecedented Irradiation Resistance of Nanocrystalline Tungsten with Equiaxed Nanocrystalline Grains to Dislocation Loop Accumulation. Acta Mater. 2019, 165, 118–128. [Google Scholar] [CrossRef]
- Sizmann, R. The Effect of Radiation upon Diffusion in Metals. J. Nucl. Mater. 1978, 69–70, 386–412. [Google Scholar] [CrossRef]
- Riviere, J.P. Radiation Induced Point Defects and Diffusion. In Application of Particle and Laser Beams in Materials Technology; NATO ASI Series; Springer: Dordrecht, The Netherlands, 2005; Volume 283. [Google Scholar] [CrossRef]
- Ehrhart, P.; Robrock, K.H.; Schober, H.R. Basic Defects in Metals. In Modern Problems in Condensed Matter Sciences; Elsevier: Amsterdam, The Netherlands, 1986; Volume 13, pp. 3–115. [Google Scholar] [CrossRef]
- Vetterick, G.A.; Gruber, J.; Suri, P.K.; Baldwin, J.K.; Kirk, M.A.; Baldo, P.; Wang, Y.Q.; Misra, A.; Tucker, G.J.; Taheri, M.L. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures. Sci. Rep. 2017, 7, 12275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suryanarayana, C.; Koch, C.C. Chapter 12 Nanostructured Materials. In Non-Equilibrium Processing of Materials; Pergamon Materials Series; Elsevier: Amsterdam, The Netherlands, 1999; Volume 2, pp. 313–344. [Google Scholar] [CrossRef]
- Sauvage, X.; Wilde, G.; Divinski, S.V.; Horita, Z.; Valiev, R.Z. Grain Boundaries in Ultrafine Grained Materials Processed by Severe Plastic Deformation and Related Phenomena. Mater. Sci. Eng. A 2012, 540, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tschopp, M.A.; Solanki, K.N.; Gao, F.; Sun, X.; Khaleel, M.A.; Horstemeyer, M.F. Probing Grain Boundary Sink Strength at the Nanoscale: Energetics and Length Scales of Vacancy and Interstitial Absorption by Grain Boundaries in α -Fe. Phys. Rev. B 2012, 85, 064108. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Bachmaier, A.; Beloshenko, V.A.; Beygelzimer, Y.; Blank, V.D.; Botta, W.J.; Bryła, K.; Čížek, J.; Divinski, S.; Enikeev, N.A.; et al. Nanomaterials by Severe Plastic Deformation: Review of Historical Developments and Recent Advances. Mater. Res. Lett. 2022, 10, 163–256. [Google Scholar] [CrossRef]
- Nita, N.; Schaeublin, R.; Victoria, M.; Valiev, R.Z. Effects of Irradiation on the Microstructure and Mechanical Properties of Nanostructured Materials. Philos. Mag. 2005, 85, 723–735. [Google Scholar] [CrossRef]
- Jawaharram, G.S.; Dillon, S.J.; Averback, R.S. Hardening Mechanisms in Irradiated Cu–W Alloys. J. Mater. Res. 2017, 32, 3156–3164. [Google Scholar] [CrossRef]
- Hung, C.Y.; Vetterick, G.; Hopkins, E.; Balwin, J.K.; Baldo, P.; Kirk, M.A.; Misra, A.; Taheri, M.L. Insight into Defect Cluster Annihilation at Grain Boundaries in an Irradiated Nanocrystalline Iron. J. Nucl. Mater. 2022, 566, 153761. [Google Scholar] [CrossRef]
- Julie, S.; Dash, M.K.; Wasekar, N.P.; David, C.; Kamruddin, M. Effect of Annealing and Irradiation on the Evolution of Texture and Grain Boundary Interface in Electrodeposited Nanocrystalline Nickel of Varying Grain Sizes. Surf. Coat. Technol. 2021, 426, 127770. [Google Scholar] [CrossRef]
- Michael, J.R. Focused Ion Beam Induced Microstructural Alterations: Texture Development, Grain Growth, and Intermetallic Formation. Microsc. Microanal. 2011, 17, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Knorr, D.B.; Tracy, D.P. A Review of Microstructure in Vapor Deposited Copper Thin Films. Mater. Chem. Phys. 1995, 41, 206–216. [Google Scholar] [CrossRef]
- Dahlgren, S.D. Columnar Grains and Twins in High-Purity Sputter-Deposited Copper. J. Vac. Sci. Technol. 1974, 11, 832–836. [Google Scholar] [CrossRef]
- Eckert, J.; Holzer, J.C.; Krill, C.E.; Johnson, W.L. Structural and Thermodynamic Properties of Nanocrystalline Fcc Metals Prepared by Mechanical Attrition. J. Mater. Res. 1992, 7, 11. [Google Scholar] [CrossRef]
- Koch, C.C. Structural Nanocrystalline Materials: An Overview. J. Mater. Sci. 2007, 42, 1403–1414. [Google Scholar] [CrossRef]
- Mathaudhu, S.N. Building on Gleiter: The Foundations and Future of Deformation Processing of Nanocrystalline Metals. Metall. Mater. Trans. A 2020, 51, 6020–6044. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical Alloying and Milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Cahn, J.W. The Impurity-Drag Effect in Grain Boundary Motion. Acta Metall. 1962, 10, 789–798. [Google Scholar] [CrossRef]
- Enikeev, N.A.; Shamardin, V.K.; Radiguet, B. Radiation Tolerance of Ultrafine-Grained Materials Fabricated by Severe Plastic Deformation. Mater. Trans. 2019, 60, 1723–1731. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.N.; Horsewell, A.; Toft, P.; Edwards, D.J. Temperature and Dose Dependencies of Microstructure and Hardness of Neutron Irradiated OFHC Copper. J. Nucl. Mater. 1995, 224, 131–140. [Google Scholar] [CrossRef]
- Fabritsiev, S.A.; Pokrovsky, A.S.; Ostrovsky, S.E. Effect of the Irradiation–Annealing–Irradiation Cycle on the Mechanical Properties of Pure Copper and Copper Alloy. J. Nucl. Mater. 2004, 324, 23–32. [Google Scholar] [CrossRef]
- Fabritsiev, S.A.; Pokrovsky, A.S. Effect of Irradiation Temperature on Microstructure, Radiation Hardening and Embrittlement of Pure Copper and Copper-Based Alloy. J. Nucl. Mater. 2007, 367–370, 977–983. [Google Scholar] [CrossRef]
- Hashimoto, N.; Byun, T.S.; Farrell, K. Microstructural Analysis of Deformation in Neutron-Irradiated Fcc Materials. J. Nucl. Mater. 2006, 351, 295–302. [Google Scholar] [CrossRef]
- Dai, Y.; Victoria, M. Defect Cluster Structure and Tensile Properties of Copper Single Crystals Irradiated With 600 MeV Protons. MRS Online Proc. Libr. 1996, 439, 319. [Google Scholar] [CrossRef]
- Fabritsiev, S.A.; Pokrovsky, A.S. Effect of Irradiation Temperature and Dose on Radiation Hardening of Some Pure Metals. J. Nucl. Mater. 2011, 417, 940–943. [Google Scholar] [CrossRef]
- Singh, B.N.; Edwards, D.J.; Toft, P. Effect of Neutron Irradiation and Post-Irradiation Annealing on Microstructure and Mechanical Properties of OFHC-Copper. J. Nucl. Mater. 2001, 14, 205–218. [Google Scholar] [CrossRef]
- Was, G.S.; Averback, R.S. Radiation Damage Using Ion Beams. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 195–221. [Google Scholar] [CrossRef]
- Was, G.S.; Allen, T.R. Radiation Damage from Different Particle Types. In Radiation Effects in Solids; Sickafus, K.E., Kotomin, E.A., Uberuaga, B.P., Eds.; NATO Science Series II, Mathematics, Physics and Chemistry; Springer: Dordrecht, The Netherlands, 2007; Volume 235. [Google Scholar]
- Zinkle, S.J.; Snead, L.L. Opportunities and Limitations for Ion Beams in Radiation Effects Studies: Bridging Critical Gaps between Charged Particle and Neutron Irradiations. Scr. Mater. 2018, 143, 154–160. [Google Scholar] [CrossRef]
- Was, G.S.; Zinkle, S.J. Toward the Use of Ion Irradiation to Predict Reactor Irradiation Effects. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 468–484. [Google Scholar] [CrossRef]
- Stoller, R.E. Radiation Damage Correlation. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 456–467. [Google Scholar] [CrossRef]
- Packan, N.H.; Farrell, K.; Stiegler, J.O. Correlation of Neutron and Heavy-Ion Damage. J. Nucl. Mater. 1978, 78, 143–155. [Google Scholar] [CrossRef]
- Mansur, L.K. Correlation of Neutron and Heavy-Ion Damage. J. Nucl. Mater. 1978, 78, 156–160. [Google Scholar] [CrossRef]
- Mansur, L.K. Theory and Experimental Background on Dimensional Changes in Irradiated Alloys. J. Nucl. Mater. 1994, 216, 97–123. [Google Scholar] [CrossRef]
- Fan, C.; Shang, Z.; Li, M.; Wang, H.; El-Azab, A.; Zhang, X. The Influence of Helium and Heavy Ion Irradiations on Radiation Responses of Single Crystal Cu with Nanovoids: An in Situ TEM Study. Acta Mater. 2022, 240, 118293. [Google Scholar] [CrossRef]
- Farrell, K.; Lewis, M.B.; Packan, N.H. Simultaneous Bombardment with Helium, Hydrogen, and Heavy Ions to Simulate Microstructural Damage from Fission or Fusion Neutrons. Scr. Metall. 1978, 12, 1121–1124. [Google Scholar] [CrossRef]
- Chou, P.; Ghoniem, N.M. On the Stochastic Theory of Point Defect Diffusion during Irradiation: Cascade Size and Shape Effects. J. Nucl. Mater. 1985, 137, 63–72. [Google Scholar] [CrossRef]
- Crespillo, M.L.; Graham, J.T.; Zhang, Y.; Weber, W.J. Temperature Measurements during High Flux Ion Beam Irradiations. Rev. Sci. Instrum. 2016, 87, 024902. [Google Scholar] [CrossRef] [PubMed]
- Getto, E.; Jiao, Z.; Monterrosa, A.M.; Sun, K.; Was, G.S. Effect of Irradiation Mode on the Microstructure of Self-Ion Irradiated Ferritic-Martensitic Alloys. J. Nucl. Mater. 2015, 465, 116–126. [Google Scholar] [CrossRef]
- Ghoniem, N.M.; Kulcinski, G.L. A Critical Assessment of the Effects of Pulsed Irradiation on the Microstructure, Swelling, and Creep of Materials. Nucl. Technol. Fusion 1982, 2, 165–198. [Google Scholar] [CrossRef]
- Sorbom, B.N.; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; et al. ARC: A Compact, High-Field, Fusion Nuclear Science Facility and Demonstration Power Plant with Demountable Magnets. Fusion Eng. Des. 2015, 100, 378–405. [Google Scholar] [CrossRef] [Green Version]
Purity | Production/ Processing | Irradiation/ Annealing Temperature (°C) | Annealing Time (min) | Radiated Particle | Particle Energy (MeV) | Dose (dpa) | Flux (dpa/s or ion/cm2.s) | Initial Grain Size (nm) | Final Grain Size (nm) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
99.99% | Sputter deposition | 25 | - | He | 0.3 | 1 | 1.4 × 10−4 dpa/s | 19 | 222 | [9] |
400 | He | 0.3 | 1 | 19 | 242 | |||||
400 | He | 0.3 | 5 | 19 | 422 | |||||
NR | Vapor deposition | 450 | - | He | 0.2 | 3 | NR | 20 | 60 | [12] |
NR | Vapor deposition | 450 | - | He | 0.2 | 1.5 | NR | 14 | 31 | [22] |
99.999% | Rolled and annealed sheet | 400 | - | Cu | 2.4 | 10 | 2.5 × 10−3 dpa/s | 700 | 700 | [23] |
300,000 | 500,000 | |||||||||
NR | DC-magnetron sputtering | 100 | 10 | - | - | - | - | 43 | 59 | [27] |
100 | 180 | 43 | 81 | |||||||
100 | 300 | 43 | 104 | |||||||
300 | 60 | 43 | 127 | |||||||
500 | 60 | 43 | 330 | |||||||
99.95% | DC-magnetron sputtering | 300 | 60 | - | - | - | - | 43 | 77 | [28] |
300 | 180 | 43 | 86 | |||||||
300 | 300 | 43 | 106 | |||||||
500 | 60 | 43 | 175 | |||||||
500 | 180 | 43 | 237 | |||||||
500 | 300 | 43 | 278 | |||||||
NR | Sputter deposition | −223 | - | Kr | 0.5 | 2 | 2.5 × 1016 dpa/s | 13 | 13 | [31] |
3 | 13 | 15 | ||||||||
5 | 13 | 20 | ||||||||
10 | 13 | 24 | ||||||||
18 | 13 | 27 | ||||||||
28 | 13 | 32 | ||||||||
47 | 13 | 36 | ||||||||
93 | 13 | 34 | ||||||||
NR | Sputter deposition | 25 | - | Kr | 0.5 | 2 | 2.5 × 1016 dpa/s | 13 | 18 | [31] |
3 | 13 | 20 | ||||||||
5 | 13 | 24 | ||||||||
10 | 13 | 27 | ||||||||
18 | 13 | 39 | ||||||||
28 | 13 | 47 | ||||||||
47 | 13 | 52 | ||||||||
93 | 13 | 46 | ||||||||
NR | Sputter deposition | 27 | - | Kr | 0.5 | 1 | 2.5 × 1012 ions/cm2.s | 13 | 17 | [32] |
3 | 13 | 20 | ||||||||
5 | 13 | 24 | ||||||||
10 | 13 | 28 | ||||||||
18 | 13 | 37 | ||||||||
27 | 13 | 39 | ||||||||
45 | 13 | 47 | ||||||||
64 | 13 | 53 | ||||||||
90 | 13 | 46 | ||||||||
99.999% | Electrodeposition | 70–100 | - | Neutron | >1.98 | 0.0034 | 7.52 × 10−7 dpa/s | 34 | 80 | [34] |
1 | 34 | 800 | ||||||||
2 | 34 | 750 | ||||||||
99.999% | NR | 70–100 | Neutron | >1.98 | 0.0034 | 7.52 × 10−7 dpa/s | 38,000 | 39,000 | [34] | |
- | 1 | 38,000 | 37,000 | |||||||
2 | 38,000 | 49,000 | ||||||||
NR | Sputter deposition | 25 | Ar | 0.2 | 2 * | 1.88 × 1012, 6.25 × 1012, 3.57 × 1013 ion/cm2.s | 15 | 24 | [50] | |
4 * | 15 | 27 | ||||||||
8 * | 15 | 31 | ||||||||
13 * | 15 | 34 | ||||||||
- | 16 * | 15 | 36 | |||||||
25 * | 15 | 44 | ||||||||
32 * | 15 | 48 | ||||||||
45 * | 15 | 52 | ||||||||
64 * | 15 | 52 | ||||||||
76 * | 15 | 52 | ||||||||
NR | Sputter deposition | 25 | - | Kr | 1.8 | 20 | NR | 112 | 547 | [51] |
Characteristic | Thin Films | SPD-Processed Bulk Materials |
---|---|---|
Purity | High purity (vacuum environment, clean surfaces) [82] | Presence of impurities [74,86,87] |
Achievable Grain Size | <10 nm [82] | HPT: 10–100 nm [76] Mechanical milling: 5–50 nm [84,85] Other SPD processes: <1 μm [76,86] |
Grain Structure | Primarily columnar grains [82,83] Lattice strain from rapid cooling [82] | Equiaxed grains [86] High-angle grain boundaries [86,87] |
Grain Structure Control | Grain size can be controlled via substrate temperature [82,83] | Grain boundary misorientation evolves with strain [74] Flash annealing to control grain size |
Scalability | Limited by vacuum/clean environment | HPT: size limited (samples typically 10 mm in diameter and 1 mm thick) [76] Other processes: scalable |
Limitation | Specimen thickness effect [64] | Difficult to control grain boundary character Impurity level (mechanical milling) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, M.; Salvador, H.; Clark, T.; Lang, E.; Hattar, K.; Mathaudhu, S. Thermal and Radiation Stability in Nanocrystalline Cu. Nanomaterials 2023, 13, 1211. https://doi.org/10.3390/nano13071211
Thomas M, Salvador H, Clark T, Lang E, Hattar K, Mathaudhu S. Thermal and Radiation Stability in Nanocrystalline Cu. Nanomaterials. 2023; 13(7):1211. https://doi.org/10.3390/nano13071211
Chicago/Turabian StyleThomas, Marie, Heather Salvador, Trevor Clark, Eric Lang, Khalid Hattar, and Suveen Mathaudhu. 2023. "Thermal and Radiation Stability in Nanocrystalline Cu" Nanomaterials 13, no. 7: 1211. https://doi.org/10.3390/nano13071211
APA StyleThomas, M., Salvador, H., Clark, T., Lang, E., Hattar, K., & Mathaudhu, S. (2023). Thermal and Radiation Stability in Nanocrystalline Cu. Nanomaterials, 13(7), 1211. https://doi.org/10.3390/nano13071211