Magnetocaloric Effect, Structure, Spinodal Decomposition and Phase Transformations Heusler Alloy Ni-Mn-In
Abstract
:1. Introduction
2. Experimental
3. Research Results and Discussion
3.1. Characteristic of Metamagnetostructural Transformation and Magnetocaloric Effect
3.2. Structural Studies
3.3. Austenite–Martensite Boundary
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elphick, K.; Frost, W.; Samiepour, M.; Kubota, T.; Takanashi, K.; Sukegawa, H.; Mitani, S.; Hirohata, A. Heusler alloys for spintronic devices: Review on recent development and future perspectives. Sci. Technol. Adv. Mater. 2021, 22, 235–271. [Google Scholar] [CrossRef] [PubMed]
- Mashirov, A.V.; Irzhak, A.V.; Tabachkova, N.Y.; Milovich, F.O.; Kamantsev, A.P.; Zhao, D.; Liu, J.; Kolesnikova, V.G.; Koledov, V.V. Magnetostructural Phase Transition in Micro-and Nanosize Ni–Mn–Ga–Cu Alloys. IEEE Magn. Lett. 2019, 10, 1–4. [Google Scholar] [CrossRef]
- Mashirov, A.V.; Kamantsev, A.P.; Kuznetsov, D.D.; Koledov, V.V.; Shavrov, V.G. Surface Energy upon the Martensitic Phase Transition in Microsized Samples of Ni–Mn–Ga–Cu Heusler Alloy. Bull. Russ. Acad. Sci. Phys. 2021, 85, 751–754. [Google Scholar] [CrossRef]
- Bhobe, P.A.; Priolkar, K.R.; Nigam, A.K. Room temperature magnetocaloric effect in Ni–Mn–In. Appl. Phys. Lett. 2007, 91, 242503. [Google Scholar] [CrossRef]
- Gottschall, T.; Skokov, K.P.; Frincu, B.; Gutfleisch, O. Large reversible magnetocaloric effect in Ni-Mn-In-Co. Appl. Phys. Lett. 2015, 106, 021901. [Google Scholar] [CrossRef]
- Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and Its Applications; CRC Press: Boca Raton, FL, USA, 2016; p. 486. [Google Scholar]
- Wang, Y.; Salas, D.; Duong, T.C.; Medasani, B.; Talapatra, A.; Ren, Y.; Chumlyakov, Y.I.; Karaman, I.; Arróyave, R. On the fast kinetics of B2–L21 ordering in Ni-Co-Mn-In metamagnetic shape memory alloys. J. Alloys Compd. 2019, 781, 479–489. [Google Scholar] [CrossRef]
- Ito, W.; Nagasako, M.; Umetsu, R.Y.; Kainuma, R.; Kanomata, T.; Ishida, K. Atomic ordering and magnetic properties in the Ni45Co5Mn36.7In13.3 metamagnetic shape memory alloy. Appl. Phys. Lett. 2008, 93, 232503. [Google Scholar] [CrossRef]
- Ito, W.; Imano, Y.; Kainuma, R.; Sutou, Y.; Oikawa, K.; Ishida, K. Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys. Metall. Mater. Trans. A 2007, 38, 759–766. [Google Scholar] [CrossRef]
- Sánchez-Alarcos, V.; Recarte, V.; Pérez-Landazábal, J.I.; Cuello, G.J. Correlation between atomic order and the characteristics of the structural and magnetic transformations in Ni–Mn–Ga shape memory alloys. Acta Mater. 2007, 55, 3883–3889. [Google Scholar] [CrossRef]
- Entel, P.; Gruner, M.E.; Acet, M.; Hucht, A.; Çakır, A.; Arróyave, R.; Karaman, I.; Duong, T.C.; Talapatra, A.; Bruno, N.M.; et al. Probing glassiness in Heuslers via density functional theory calculations. Frustrated Mater. Ferroic Glas. 2018, 275, 153–182. [Google Scholar]
- Çakır, A.; Mehmet, A.; Michael, F. Shell-ferromagnetism of nano-Heuslers generated by segregation under magnetic field. Sci. Rep. 2016, 6, 28931. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, D.D.; Kuznetsova, E.I.; Mashirov, A.V.; Loshachenko, A.S.; Danilov, D.V.; Shandryuk, G.A.; Shavrov, V.G.; Koledov, V.V. In Situ TEM Study of Phase Transformations in Nonstoichiometric Ni46Mn41In13 Heusler Alloy. Phys. Solid State 2022, 64, 15–21. [Google Scholar] [CrossRef]
- Kuznetsov, A.S.; Mashirov, A.V.; Aliev, A.M.; Petrov, A.O.; Anikin, M.S.; Musabirov, I.I.; Amirov, A.A.; Kon, I.A.; Koledov, V.V.; Shavrov, V.G. The Magnetocaloric Effect upon Adiabatic Demagnetization of a Polycrystalline DyNi2 Alloy. Phys. Met. Metallogr. 2022, 123, 397–401. [Google Scholar] [CrossRef]
- Aliev, A.M.; Batdalov, A.B.; Khanov, L.N.; Mashirov, A.V.; Dil’mieva, E.T.; Koledov, V.V.; Shavrov, V.G.E. Degradation of the magnetocaloric effect in Ni49.3Mn40.4In10.3 in a cyclic magnetic field. Phys. Solid State 2020, 62, 837–840. [Google Scholar] [CrossRef]
- Khanov, L.N.; Batdalov, A.B.; Mashirov, A.V.; Kamantsev, A.P.; Aliev, A.M. Magnetocaloric Effect and Magnetostriction in a Ni49.3Mn40.4In10.3 Heusler Alloy in AC Magnetic Fields. Phys. Solid State 2018, 60, 1111–1114. [Google Scholar] [CrossRef]
- Pramanick, S.; Chatterjee, S.; Giri, S.; Majumdar, S.; Koledov, V.; Mashirov, A.; Aliev, A.; Batdalov, A.; Hernando, B.; Rosa, W.; et al. Multiple magneto-functional properties of Ni46Mn41In13 shape memory alloy. J. Alloys Compd. 2013, 578, 157–161. [Google Scholar] [CrossRef]
- Fayzullin, R.; Buchelnikov, V.; Mashirov, A.; Zhukov, M. Phase transformations and magnetocaloric effect in Ni-Mn-(Co)-In Heusler alloys. Phys. Procedia 2015, 75, 1259–1264. [Google Scholar] [CrossRef]
- Fayzullin, R.R.; Mashirov, A.V.; Buchelnikov, V.D.; Koledov, V.V.; Shavrov, V.G.; Taskaev, S.V.; Zhukov, M.V. Direct and inverse magnetocaloric effect in Ni1.81Mn1.64In0.55, Ni1.73Mn1.80In0.47, and Ni1.72Mn1.51In0.49 Co0.28 Heusler alloys. J. Commun. Technol. Electron. 2016, 61, 1129–1139. [Google Scholar] [CrossRef]
- Gottschall, T.; Skokov, K.P.; Fries, M.; Taubel, A.; Radulov, I.; Scheibel, F.; Benke, D.; Riegg, S.; Gutfleisch, O. Making a cool choice: The materials library of magnetic refrigeration. Adv. Energy Mater. 2019, 9, 1901322. [Google Scholar] [CrossRef]
- Ghorbani Zavareh, M.; Salazar Mejía, C.; Nayak, A.K.; Skourski, Y.; Wosnitza, J.; Felser, C.; Nicklas, M. Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni50Mn35In15. Appl. Phys. Lett. 2015, 106, 071904. [Google Scholar] [CrossRef]
- Liu, J.; Gottschall, T.; Skokov, K.P.; Moore, J.D.; Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 2012, 11, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Gottschall, T.; Skokov, K.P.; Scheibel, F.; Acet, M.; Zavareh, M.G.; Skourski, Y.; Wosnitza, J.; Farle, M.; Gutfleisch, O. Dynamical effects of the martensitic transition in magnetocaloric heusler alloys from direct Δ T ad measurements under different magnetic-field-sweep rates. Phys. Rev. Appl. 2016, 5, 024013. [Google Scholar] [CrossRef]
- Batdalov, A.B.; Khanov, L.N.; Mashirov, A.V.; Koledov, V.V.; Aliev, A.M. On the nature of the magnetocaloric effect in the Ni46Mn41In13 Heusler alloy in cyclic magnetic fields. J. Appl. Phys. 2021, 129, 123901. [Google Scholar] [CrossRef]
- Brown, P.J.; Gandy, A.P.; Ishida, K.; Kainuma, R.; Kanomata, T.; Neumann, K.U.; Ziebeck KR, A. The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. J. Phys. Condens. Matter 2006, 18, 2249. [Google Scholar] [CrossRef]
- Krenke, T.; Duman, E.; Acet, M.; Wassermann, E.F.; Moya, X.; Mañosa, L.; Ouladdiaf, B. Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In. Phys. Rev. B 2007, 75, 104414. [Google Scholar] [CrossRef]
- Krenke, T.; Duman, E.; Acet, M.; Acet, M.; Wassermann, E.F.; Moya, X.; Mañosa, L.; Planes, A. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 2005, 4, 450–454. [Google Scholar] [CrossRef]
- Aseguinolaza, I.R.; Orue, I.; Svalov, A.V.; Wilson, K.; Müllner, P.; Barandiarán, J.M.; Chernenko, V.A. Martensitic transformation in Ni–Mn–Ga/Si (100) thin films. Thin Solid Film. 2014, 558, 449–454. [Google Scholar] [CrossRef]
- Chopra, H.D.; Ji, C.; Kokorin, V.V. Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys. Phys. Rev. B 2000, 61, R14913. [Google Scholar] [CrossRef]
- Acet, M.; Duman, E.; Wassermann, E.F.; Manosa, L.; Planes, A. Coexisting ferro-and antiferromagnetism in Ni2MnAl Heusler alloys. J. Appl. Phys. 2002, 92, 3867–3871. [Google Scholar] [CrossRef]
- Graf, T.; Casper, F.; Winterlik, J.; Balke, B.; Fecher, G.H.; Felser, C. Crystal structure of new Heusler compounds. Z. Für Anorg. Und Allg. Chem. 2009, 635, 976–981. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Jin, X. Origin of tweed in Au–Cu–Al alloys. Philos. Mag. 2014, 94, 56–72. [Google Scholar] [CrossRef]
- Müller, C.M.; Sologubenko, A.S.; Gerstl, S.S.; Spolenak, R. On spinodal decomposition in Cu–34 at.% Ta thin films–An atom probe tomography and transmission electron microscopy study. Acta Mater. 2015, 89, 181–192. [Google Scholar] [CrossRef]
- Bruno, N.M.; Salas, D.; Wang, S.; Roshchin, I.V.; Santamarta, R.; Arroyave, R.; Karaman, I. On the microstructural origins of martensitic transformation arrest in a NiCoMnIn magnetic shape memory alloy. Acta Mater. 2018, 142, 95–106. [Google Scholar] [CrossRef]
- Yano, T.; Murakami, Y.; Kainuma, R.; Shindo, D. Interaction between magnetic domain walls and antiphase boundaries in Ni2Mn (Al, Ga) studied by electron holography and Lorentz microscopy. Mater. Trans. 2007, 48, 2636–2641. [Google Scholar]
- Zuo, S.; Liu, Y.; Zhang, Y.; Xiong, J.; Liu, J.; Qiao, K.; Shen, B. In situ TEM study on diversified martensitic transition behaviour in Ni50Mn35In15 alloys. Nanoscale 2019, 11, 4999–5004. [Google Scholar] [CrossRef]
- Kuznetsova, E.I.; Blinova, Y.V.; Sudareva, S.V.; Krinitsina, T.P.; Bobylev, I.B.; Romanov, E.P. Spinodal decomposition of the nonstoichiometric YBa2Cu3O7-[delta] compound at room temperature. Phys. Met. Metallogr. 2006, 102, 213. [Google Scholar] [CrossRef]
- Bobylev, I.B.; Kuznetsova, E.I.; Krinitsina, T.P.; Zyuzeva, N.A.; Sudareva, S.V.; Romanov, E.P. Restoration of the microstructure of Ba2YCu3O7−δ at T > 900 °C after low-temperature decomposition. Phys. Met. Metallogr. 2011, 112, 165–169. [Google Scholar] [CrossRef]
- Kaletina, Y.V.; Kabanova, I.G.; Frolova, N.Y.; Gundyrev, V.M.; Kaletin, A.Y. Crystallographic specific features of the martensitic structure of Ni47Mn42In11 alloy. Phys. Solid State 2017, 59, 2008–2015. [Google Scholar] [CrossRef]
- Kaletina, Y.V.; Kabanova, I.G.; Frolova, N.Y.; Kaletin, A.Y. Crystal structure peculiarities of martensite in the Ni47Mn42In11alloy that underwent forward and reverse phase transformations. Phys. Met. Metallogr. 2018, 119, 383–387. [Google Scholar] [CrossRef]
- Erkartal, B.; Duppel, V.; Niemann, R.; Schultz, L.; Fähler, S.; Schürmann, U.; Kienle, L. Structure and composition of magnetocaloric Ni–Mn–In–Co thin films on the nanoscale—A TEM study. Adv. Eng. Mater. 2012, 14, 710–715. [Google Scholar] [CrossRef]
- Potekaev, A.I. Long-period states of ordered metal alloys. 1. Analysis of structural features. Russ. Phys. J. 1995, 38, 549–562. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, D.D.; Kuznetsova, E.I.; Mashirov, A.V.; Loshachenko, A.S.; Danilov, D.V.; Mitsiuk, V.I.; Kuznetsov, A.S.; Shavrov, V.G.; Koledov, V.V.; Ari-Gur, P. Magnetocaloric Effect, Structure, Spinodal Decomposition and Phase Transformations Heusler Alloy Ni-Mn-In. Nanomaterials 2023, 13, 1385. https://doi.org/10.3390/nano13081385
Kuznetsov DD, Kuznetsova EI, Mashirov AV, Loshachenko AS, Danilov DV, Mitsiuk VI, Kuznetsov AS, Shavrov VG, Koledov VV, Ari-Gur P. Magnetocaloric Effect, Structure, Spinodal Decomposition and Phase Transformations Heusler Alloy Ni-Mn-In. Nanomaterials. 2023; 13(8):1385. https://doi.org/10.3390/nano13081385
Chicago/Turabian StyleKuznetsov, D. D., E. I. Kuznetsova, A. V. Mashirov, A. S. Loshachenko, D. V. Danilov, V. I. Mitsiuk, A. S. Kuznetsov, V. G. Shavrov, V. V. Koledov, and P. Ari-Gur. 2023. "Magnetocaloric Effect, Structure, Spinodal Decomposition and Phase Transformations Heusler Alloy Ni-Mn-In" Nanomaterials 13, no. 8: 1385. https://doi.org/10.3390/nano13081385
APA StyleKuznetsov, D. D., Kuznetsova, E. I., Mashirov, A. V., Loshachenko, A. S., Danilov, D. V., Mitsiuk, V. I., Kuznetsov, A. S., Shavrov, V. G., Koledov, V. V., & Ari-Gur, P. (2023). Magnetocaloric Effect, Structure, Spinodal Decomposition and Phase Transformations Heusler Alloy Ni-Mn-In. Nanomaterials, 13(8), 1385. https://doi.org/10.3390/nano13081385