Highly Efficient Spatial Three-Level CoP@ZIF-8/pNF Based on Modified Porous NF as Dual Functional Electrocatalyst for Water Splitting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of CoP@ZIF-8/pNF Electrode
2.3. Materials Characterization
2.4. Electrochemical Measurements
3. Results
3.1. The Synthesis Mechanism and Characterization of the pNF
3.2. The Synthesis Mechanism of CoP@ZIF-8
3.3. The Effects of Different Co-Zn Ratios
3.4. Microstructure and Morphology
3.5. Hydrogen Evolution Reaction
3.6. Oxygen Evolution Reaction
3.7. Overall Water Splitting Performance
3.8. Electrocatalytic Active Site and Bubble Phenomenon
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, G.; Zhang, K.; Guo, B.; Liu, Q.; Fang, L.; Gong, J.R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 2013, 25, 3820–3839. [Google Scholar] [CrossRef] [PubMed]
- Steven, C.; Arun, M. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar]
- Zhao, Y.; Gao, W.; Li, S.; Williams, G.R.; Mahadi, A.H.; Ma, D. Solar-versus Thermal-Driven Catalysis for Energy Conversion. Joule 2019, 3, 920–937. [Google Scholar] [CrossRef]
- Liang, W.A.; Han, X.; Ren, L.G. NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting. ACS Energy Lett. 2016, 1, 445–453. [Google Scholar]
- Liu, Y.; Jiang, S.; Li, S.; Zhou, L.; Li, Z.; Li, J.; Shao, M. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B Environ. 2019, 247, 107–114. [Google Scholar] [CrossRef]
- Mikaela, G.; Petko, C.; Jorge, F.d.A.; Tobias, R.; Sören, D.; Benjamin, P.; Ralph, K.; Holger, D.; Peter, S. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614. [Google Scholar]
- Xu, Y.; Feng, T.; Cui, Z.; Guo, P.; Wang, W.; Li, Z. Fe7S8/FeS2/C as an efficient catalyst for electrocatalytic water splitting. Int. J. Hydrogen Energy 2021, 46, 39216–39225. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Y.; Dong, J.; He, C.-T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, L.; Xu, L.; Wan, C.; An, Y.; Ye, M. Recent Developments of Effective Catalysts for Hydrogen Storage Technology Using N-Ethylcarbazole. Catalysts 2020, 10, 648. [Google Scholar] [CrossRef]
- Ha, Y.; Shi, L.; Chen, Z.; Wu, R. Phase-Transited Lysozyme-Driven Formation of Self-Supported Co3O4@C Nanomeshes for Overall Water Splitting. Adv. Sci. 2019, 6, 1900272. [Google Scholar] [CrossRef]
- Chen, T.; Tan, Y. Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting. Nano Res. 2018, 11, 1331–1344. [Google Scholar] [CrossRef]
- Li, X.; Hao, X.; Abudula, A.; Guan, G. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 11973–12000. [Google Scholar] [CrossRef]
- Hang, L.; Zhang, T.; Sun, Y.; Men, D.; Lyu, X.; Zhang, Q.; Cai, W.; Li, Y. Ni0.33Co0.67MoS4 nanosheets as a bifunctional electrolytic water catalyst for overall water splitting. J. Mater. Chem. A 2018, 6, 19555–19562. [Google Scholar] [CrossRef]
- Chen, P.; Xu, K.; Fang, Z.; Tong, Y.; Wu, J.; Lu, X.; Peng, X.; Ding, H.; Wu, C.; Xie, Y. Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction. Angew. Chem. 2015, 54, 14923–14927. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, B.; Lin, Z.; Shen, S.; Xu, A.; Du, Z.; Chen, Y.; Zhong, W. In-situ surface decoration of RuO2 nanoparticles by laser ablation for improved oxygen evolution reaction activity in both acid and alkali solutions. J. Energy Chem. 2021, 54, 510–518. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Chen, W.; Zhao, Z.; Yu, X.; Park, H.S. Molybdenum oxynitride nanoparticles on nitrogen-doped CNT architectures for the oxygen evolution reaction. Nanoscale Adv. 2020, 2, 5659–5665. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Dong, Y.; Yin, F.; Li, G.; Zhao, X. NiCo2O4 nanoparticles rich in oxygen vacancies: Salt-Assisted preparation and boosted water splitting. Front. Chem. 2022, 10, 1150. [Google Scholar] [CrossRef]
- Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X. Metal-Organic Frameworks Derived Nanotube of Nickel–Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting. Adv. Funct. Mater. 2017, 27, 1703455. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Wu, C.X.; Feng, X.J.; Tan, H.Q.; Yan, L.K.; Liu, Y.; Kang, Z.H.; Wang, E.B.; Li, Y.G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 2017, 10, 788–798. [Google Scholar] [CrossRef]
- Du, C.; Shang, M.; Mao, J.; Song, W. Hierarchical MoP/Ni2P heterostructures on nickel foam for efficient water splitting. J. Mater. Chem. A 2017, 5, 15940–15949. [Google Scholar] [CrossRef]
- Dinh, K.N.; Liang, Q.; Du, C.-F.; Zhao, J.; Tok, A.I.Y.; Mao, H.; Yan, Q. Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today 2019, 25, 99–121. [Google Scholar] [CrossRef]
- Li, H.; Ke, F.; Zhu, J. MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts. Nanomaterials 2018, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Che, S.; Liu, H.; Ta, N.; Li, G.; Chen, F.; Ma, G.; Yang, F.; Li, Y. In Situ Growth of Self-Supporting MOFs-Derived Ni2P on Hierarchical Doped Carbon for Efficient Overall Water Splitting. Catalysts 2022, 12, 1319. [Google Scholar] [CrossRef]
- Kang, Q.; Li, M.; Shi, J.; Lu, Q.; Gao, F. A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 19447–19456. [Google Scholar] [CrossRef]
- Wu, J.; Wang, D.; Wan, S.; Liu, H.; Wang, C.; Wang, X. An Efficient Cobalt Phosphide Electrocatalyst Derived from Cobalt Phosphonate Complex for All-pH Hydrogen Evolution Reaction and Overall Water Splitting in Alkaline Solution. Small 2020, 16, 1900550. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-F.; Song, J.; Du, Y.; Xi, S.; Dou, S.; Nsanzimana, J.M.V.; Wang, C.; Xu, Z.J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338. [Google Scholar] [CrossRef]
- Li, Z.; Feng, H.; Song, M.; He, C.; Zhuang, W.; Tian, L. Advances in CoP electrocatalysts for water splitting. Mater. Today Energy 2021, 20, 100698. [Google Scholar] [CrossRef]
- Xie, X.Q.; Liu, J.; Gu, C.; Li, J.; Zhao, Y.; Liu, C.S. Hierarchical structured CoP nanosheets/carbon nanofibers bifunctional eletrocatalyst for high-efficient overall water splitting. J. Energy Chem. 2022, 64, 503–510. [Google Scholar] [CrossRef]
- Li, X.; Qian, X.; Xu, Y.; Duan, F.; Yu, Q.; Wang, J.; Chen, L.; Dan, Y.; Cheng, X. Electrodeposited cobalt phosphides with hierarchical nanostructure on biomass carbon for bifunctional water splitting in alkaline solution. J. Alloys Compd. 2020, 829, 154535. [Google Scholar] [CrossRef]
- Oyama, S.T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides. J. Catal. 2003, 216, 343–352. [Google Scholar] [CrossRef]
- Zhang, B.; Lui, Y.H.; Gaur, A.P.; Chen, B.; Tang, X.; Qi, Z.; Hu, S. Hierarchical FeNiP@Ultrathin Carbon Nanoflakes as Alkaline Oxygen Evolution and Acidic Hydrogen Evolution Catalyst for Efficient Water Electrolysis and Organic Decomposition. ACS Appl. Mater. Interfaces 2018, 10, 8739–8748. [Google Scholar] [CrossRef]
- Huang, J.; Su, Y.; Zhang, Y.; Wu, W.; Wu, C.; Sun, Y.; Lu, R.; Zou, G.; Li, Y.; Xiong, J. FeOx/FeP hybrid nanorods neutral hydrogen evolution electrocatalysis: Insight into interface. J. Mater. Chem. A 2018, 6, 9467–9472. [Google Scholar] [CrossRef]
- Liu, T.; Yan, X.; Xi, P.; Chen, J.; Qin, D.; Shan, D.; Devaramani, S.; Lu, X. Nickel–Cobalt phosphide nanowires supported on Ni foam as a highly efficient catalyst for electrochemical hydrogen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 14124–14132. [Google Scholar] [CrossRef]
- Tang, W.; Zhu, S.; Jiang, H.; Liang, Y.; Li, Z.; Wu, S.; Cui, Z. Self-supporting nanoporous CoMoP electrocatalyst for hydrogen evolution reaction in alkaline solution. J. Coll. Interface Sci. 2022, 625, 606–613. [Google Scholar] [CrossRef]
- Yang, B.; Du, Y.; Shao, M.; Bin, D.; Zhao, Q.; Xu, Y.; Liu, B.; Lu, H. MOF-derived RuCoP nanoparticles-embedded nitrogen-doped polyhedron carbon composite for enhanced water splitting in alkaline media. J. Coll. Interface Sci. 2022, 616, 803–812. [Google Scholar] [CrossRef]
- Xu, H.; Cao, J.; Shan, C.; Wang, B.; Xi, P.; Liu, W.; Tang, Y. MOF-Derived Hollow CoS Decorated with CeOx Nanoparticles for Boosting Oxygen Evolution Reaction Electrocatalysis. Angew. Chem. 2018, 57, 8790–8794. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Xing, C.; Han, X.; Du, R.; He, R.; Guardia, P.; Arbiol, J.; Cabot, A. MOF-Derived Ultrathin Cobalt Molybdenum Phosphide Nanosheets for Efficient Electrochemical Overall Water Splitting. Nanomaterials 2022, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Assfour, B.; Lconi, S.; Seifert, G. Hydrogen Adsorption Sites in Zeolite Imidazolate Frameworks ZIF-8 and ZIF-11. J. Phys. Chem. C Nanomater. Interfaces 2010, 114, 13381–13384. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Q.; Dou, S.; Deng, L.; Huo, J.; Wang, S. ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalyst. J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 15836–15840. [Google Scholar] [CrossRef]
- Xiao, L.; Zheng, S.; Yang, K.; Duan, J.; Jiang, J. The construction of CoP nanoparticles coated with carbon layers derived from core-shell bimetallic MOF for electrochemical detection of dopamine. Microchem. J. 2021, 168, 106432. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Cai, N.; Wang, M.; Li, H.; Yu, F. High topological tri-metal phosphide of CoP@FeNiP toward enhanced activities in oxygen evolution reaction. Nanoscale 2021, 13, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Liao, W.; Fu, Y.; Qian, M.; Dai, H.; Mei, L.; Zhai, Y.; Chen, T.; Yang, L.; Yang, Q. Ag-doped CoP Hollow Nanoboxes as Efficient Water Splitting Electrocatalysts and Antibacterial Materials. ChemistrySelect 2022, 7, e202202343. [Google Scholar] [CrossRef]
- Li, Z.; Sui, J.; Zhang, Q.; Yu, J.; Yu, L.; Dong, L. CoP@NC electrocatalyst promotes hydrogen and oxygen productions for overall water splitting in alkaline media. Int. J. Hydrogen Energy 2020, 46, 2095–2102. [Google Scholar] [CrossRef]
- Jomekian, A.; Bazooyar, B.; Esmaeilzadeh, J.; Behbahani, R.M. Highly CO2 selective chitosan/g-C3N4/ZIF-8 membrane on polyethersulfone microporous substrate. Sep. Purif. Technol. 2020, 236, 116307. [Google Scholar] [CrossRef]
- Wang, Q.; Ji, Y.; Shi, J.; Wang, L. NIR-driven Water Splitting H2 Production Nano-platform for H2 Mediated Cascade Amplifying Synergetic Cancer Therapy. ACS Appl. Mater. Interfaces 2020, 12, 23677–23688. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.M. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 2012, 41, 7016–7031. [Google Scholar] [CrossRef]
- Nam, D.H.; Kim, R.H.; Lee, C.L.; Kwon, H.S. Highly Reversible Sn. J. Electrochem. Soc. 2012, 159, A1822. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, C.; Wang, A.; Zeng, Y. 3-D Network Pore Structures in Copper Foams by Electrodeposition and Hydrogen Bubble Templating Mechanism. J. Electrochem. Soc. 2015, 162, D365–D370. [Google Scholar] [CrossRef]
- Plowman, B.J.; Jones, L.A.; Bhargava, S.K. Building with bubbles: The formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chem. Commun. 2015, 51, 4331–4346. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, Y.; Shen, R.; Ru, C.; Hu, Y. Effect of Bubble Behavior on the Morphology of Foamed Porous Copper Prepared via Electrodeposition. J. Electrochem. Soc. 2013, 160, D441–D445. [Google Scholar] [CrossRef]
- Yu, X.; Wang, M.; Wang, Z.; Gong, X.; Guo, Z. The structure evolution mechanism of electrodeposited porous Ni films on NH4Cl concentration. Appl. Surf. Sci. 2016, 360, 502–509. [Google Scholar] [CrossRef]
- Yu, X.; Yang, J.; Sui, Z.; Wang, M. Effects of ultrasonic field on structure evolution of Ni film electrodeposited by bubble template method for hydrogen evolution electrocatalysis. J. Solid State Electrochem. 2021, 25, 2201–2212. [Google Scholar] [CrossRef]
- Dong, Y.; Ji, S.; Wang, H.; Linkov, V.; Wang, R. In-site hydrogen bubble template method to prepare Ni coated metal meshes as effective bi-functional electrodes for water splitting. Dalton Trans. 2022, 51, 9681–9688. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Zhou, H.; Li, J.; Yao, S.; Wang, H. A high-performance electrocatalyst of CoMoP@NF nanosheet arrays for hydrogen evolution in alkaline solution. J. Mater. Sci. 2019, 54, 11585–11595. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, J.; Xu, L.; Xu, L.; Li, H.; Li, H. Facile Synthesis of Co–B Amorphous Alloy in Uniform Spherical Nanoparticles with Enhanced Catalytic Properties. ACS Catal. 2012, 2, 2119–2125. [Google Scholar] [CrossRef]
- Bai, X.-J.; Zhai, X.; Zhang, L.-Y.; Fu, Y.; Qi, W. Site-directed reduction engineering within bimetal-organic frameworks for efficient size-selective catalysis. Matter 2021, 4, 2919–2935. [Google Scholar] [CrossRef]
- Yun, Y.; Fang, Y.; Fu, W.; Du, W.; Zhu, Y.; Sheng, H.; Astruc, D.; Zhu, M. Exploiting the Fracture in Metal-Organic Frameworks: A General Strategy for Bifunctional Atom-Precise Nanocluster/ZIF-8(300 °C) Composites. Small 2022, 18, e2107459. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, K.; Liu, S.; Cao, X.; Wu, K.; Cheong, W.C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y.; et al. Core-Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, M.; Pan, Y.; Zhang, J. Porous Co–Mo phosphide nanotubes: An efficient electrocatalyst for hydrogen evolution. J. Mater. Sci. 2017, 52, 10406–10417. [Google Scholar] [CrossRef]
- Jin, J.; Yin, J.; Liu, H.; Huang, B.; Hu, Y.; Zhang, H.; Sun, M.; Peng, Y.; Xi, P.; Yan, C.H. Atomic Sulfur Filling Oxygen Vacancies Optimizes H Absorption and Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angew. Chem. 2021, 133, 14236–14242. [Google Scholar] [CrossRef]
- Bai, N.; Li, Q.; Mao, D.; Li, D.; Dong, H. One-Step Electrodeposition of Co/CoP Film on Ni Foam for Efficient Hydrogen Evolution in Alkaline Solution. ACS Appl. Mater. Interfaces 2016, 8, 29400–29407. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, Y.; Wang, H.; Yao, S. Self-Assembled MoOx@Co2P4O12 as an Ideal Bifunctional Catalyst for Overall Water Splitting. J. Electrochem. Soc. 2021, 168, 104512. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Xiong, D.; Zhang, B.; Liu, Y.; Wu, K.H.; Amorim, I.; Li, W.; Liu, L. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chem. Sci. 2018, 9, 3470–3476. [Google Scholar] [CrossRef]
Catalysts | Number of Heat Treatments | Maximum Temperature | HERη (mV) (10 mA cm−2) | OERη (mV) (10 mA cm−2) | Overall Water Splitting (V) (10 mA cm−2) | Stability (h) | Refs. |
---|---|---|---|---|---|---|---|
CoP@ZIF-8/pNF | 1 | 300 °C | 77 | 226 | 1.57 | 60 | This work |
Pt/C||RuO2 | - | - | - | - | 1.57 | 240 | [18,19] |
CoP-NS/C | 2 | 300 °C | 140 | 292 | - | 24 | [23] |
CoP/CNFs | 4 | 900 °C | 225 | 325 | 1.65 | 8 | [29] |
CoP/C | 2 | 800 °C | 140 | 250 | 1.56 | 24 | [30] |
NiCoP NWs/NF | 2 | 300 °C | 118 | - | - | 48 | [34] |
np-CoMoP | 2 | >1500 °C | 40.8 | - | - | 24 | [35] |
CoMoP | 1 | 350 °C | 89 | 273 | 1.56 | 100 | [38] |
Co-NC@CoP-NC | 2 | 700 °C | - | 330 | - | 5.5 | [41] |
Ag-CoP | 2 | 400 °C | 97 | 256 | 1.57 | 12 | [44] |
CoP@NC | 1 | 350 °C | 75 | 268 | 1.69 | 9 | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, L.; Zhang, W.; Sun, S.; Yao, S. Highly Efficient Spatial Three-Level CoP@ZIF-8/pNF Based on Modified Porous NF as Dual Functional Electrocatalyst for Water Splitting. Nanomaterials 2023, 13, 1386. https://doi.org/10.3390/nano13081386
Wang H, Zhang L, Zhang W, Sun S, Yao S. Highly Efficient Spatial Three-Level CoP@ZIF-8/pNF Based on Modified Porous NF as Dual Functional Electrocatalyst for Water Splitting. Nanomaterials. 2023; 13(8):1386. https://doi.org/10.3390/nano13081386
Chicago/Turabian StyleWang, Hongzhi, Limin Zhang, Weiguo Zhang, Shaofeng Sun, and Suwei Yao. 2023. "Highly Efficient Spatial Three-Level CoP@ZIF-8/pNF Based on Modified Porous NF as Dual Functional Electrocatalyst for Water Splitting" Nanomaterials 13, no. 8: 1386. https://doi.org/10.3390/nano13081386
APA StyleWang, H., Zhang, L., Zhang, W., Sun, S., & Yao, S. (2023). Highly Efficient Spatial Three-Level CoP@ZIF-8/pNF Based on Modified Porous NF as Dual Functional Electrocatalyst for Water Splitting. Nanomaterials, 13(8), 1386. https://doi.org/10.3390/nano13081386