Comparison of Thermal and Laser-Reduced Graphene Oxide Production for Energy Storage Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Graphite Oxide
2.3. Synthesis of Reduced Graphene Oxide
- (a)
- An electrical furnace (EF-TrGO samples): the Tecno Piro 210 furnace was heated to the desired temperature and then GO powder was introduced and treated under air conditions.
- (b)
- A fusion instrument (FI-TrGO samples): GO powder was introduced into a platinum melting pot and all of it together was inserted into the fusion instrument model Perl’ X 3 (Malvern-PANalytical) at an automatic heating rate under air conditions.
- (c)
- A tubular reactor inside an electrical furnace (TR-TrGO samples): GO powder was inserted into the electric furnace of the reaction system Carbolite inside a quartz tube (20 mm outer and 17 mm inner diameters) under Ar atmosphere (100 mL min−1) until the desired temperature, at a rate of 50 °C min−1, and then held isothermally.
- (d)
- A heating plate (HP-TrGO samples): the IKA C-MAG HS 7 heating plate was heated until the desired temperature, and then the GO powder was placed on it and treated under air conditions.
- (e)
- A commercial microwave oven (Whirlpool) (MO-TrGO samples): In this case, a power control was applied instead of a temperature control. The GO powder was placed inside and two powers (320 W or 640 W) were applied, under air conditions.
- (a)
- A commercial continuous-wave CO2 laser (10.6 µm) with an XY control system was used to produce three samples of reduced graphene oxide (IR-LrGO samples). The laser power is up to 40 W and the scan speed can be tuned up to 600 mm·s−1. The sample is fixed, mounted on a static plate, and typically fixed with tape. Only the laser head moves at the specified speed; however, the used values rarely go over 100 mm/s. The focused beam size is around 100 µm. The maximum resolution of the machine is 25 µm. The graphene oxide powder in the water was sonicated for 2 h and then centrifuged at 3000 rpm for 20 min. The GO in aqueous solution (2.23 mg mL−1) was deposited as follows: a first drop casting of 100 mL was performed on commercial 16 × 25 cm2 acetate films with 100 µm of thickness (Crafter’s companion, Newton Aycliffe, UK). The films were then dried in air for 48 h. Next, a second drop casting of 100 mL was made on the same films to achieve a second layer of GO. Another 48 h was used to dry the films in air. Finally, the rGO samples were fabricated at a fixed scan speed of 100 mm·s−1 and a varying power of 1.6 W, 1.8 W and 2.0 W.
- (b)
- An ultraviolet diode laser (405 nm, 1000 mW), attached to an X-Y control system was used to produce three samples of reduced graphene oxide (UV-LrGO samples). The maximum resolution was 327 ppi (pixels per inch), and the only controllable parameter was the laser exposure time of each point, which could be varied from 1 up to 100 ms, in 1 ms intervals. As the machines that control each laser used in this work are different, the sample size that can be introduced into the machines are also different. In the case of the UV laser, the reduced dimensions of the machine require smaller samples. However, the amount of deposited material was calculated to produce the same thickness in proportion with the deposited area. The graphene oxide powder was sonicated for 1 h in water. Then, the GO aqueous solution (5 mg·mL−1) was deposited by means of three consecutive drop castings of 2 mL on glass sheets of 25 × 37 mm2, and dried in air overnight. Once fully dried, the samples were irradiated with the laser through two consecutive and complementary raster presets, to achieve complete areal irradiation. The first irradiation transformed a circular region in the center of each pixel, while the second irradiation directed the beam to the edges of the pixel. The rGO samples were fabricated using irradiation times of 2 ms, 10 ms, and 50 ms per pixel.
2.4. Samples Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimitrakakis, G.K.; Tylianakis, E.; Froudakis, G.E. Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage. Nano Lett. 2008, 8, 3166–3170. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal′Ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Perreault, F.; de Faria, A.F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef]
- Olabi, A.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of graphene in energy storage device—A review. Renew. Sustain. Energy Rev. 2020, 135, 110026. [Google Scholar] [CrossRef]
- Pumera, M. Electrochemistry of graphene: New horizons for sensing and energy storage. Chem. Rec. 2009, 9, 211–223. [Google Scholar] [CrossRef]
- Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3, 2653–2659. [Google Scholar] [CrossRef]
- Pan, D.; Wang, S.; Zhao, B.; Wu, M.; Zhang, H.; Wang, Y.; Jiao, Z. Li Storage Properties of Disordered Graphene Nanosheets. Chem. Mater. 2009, 21, 3136–3142. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R.D.; Colombo, L.; Ruoff, R.S. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359–4363. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 2010, 4, 2429–2437. [Google Scholar] [CrossRef] [PubMed]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Dolbin, A.; Vinnikov, N.; Esel’son, V.B.; Gavrilko, V.G.; Basnukaeva, R.M.; Khlistuck, M.V.; Maser, W.K.; Benito, A.M. The effect of graphene oxide reduction temperature on the kinetics of low-temperature sorption of hydrogen. Low Temp. Phys. 2019, 45, 422–426. [Google Scholar] [CrossRef]
- Velasco, A.; Ryu, Y.K.; Boscá, A.; Ladrón-De-Guevara, A.; Hunt, E.; Zuo, J.; Pedrós, J.; Calle, F.; Martinez, J. Recent trends in graphene supercapacitors: From large area to microsupercapacitors. Sustain. Energy Fuels 2021, 5, 1235–1254. [Google Scholar] [CrossRef]
- Jeong, H.-K.; Lee, Y.P.; Jin, M.H.; Kim, E.S.; Bae, J.J.; Lee, Y.H. Thermal stability of graphite oxide. Chem. Phys. Lett. 2009, 470, 255–258. [Google Scholar] [CrossRef]
- Sengupta, I.; Chakraborty, S.; Talukdar, M.; Pal, S.K.; Chakraborty, S. Thermal reduction of graphene oxide: How temperature influences purity. J. Mater. Res. 2018, 33, 4113–4122. [Google Scholar] [CrossRef]
- Yadav, A.; Upadhyaya, A.; Gupta, S.K.; Negi, C.M.S. Thermal annealing dependence of charge injection and transport in the P3HT:graphene nanocomposite based devices. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 124, 114351. [Google Scholar] [CrossRef]
- Huang, D.-J.; Peng, W.-T.; Lee, Y.-T.; Lu, M.-C. Reduced graphene oxide films for reducing hotspot temperatures of electronic devices. Int. Commun. Heat Mass Transf. 2022, 136, 106193. [Google Scholar] [CrossRef]
- Alwahib, A.A.; Saleh, M.A.; Abdulrazzaq, M.J. Enhancing the sensing behavior of a reduced graphene magnetite-based plasmonic optical fiber sensor. Appl. Opt. 2022, 61, 6110. [Google Scholar] [CrossRef]
- Kim, J.M.; Hong, W.G.; Lee, S.M.; Chang, S.J.; Jun, Y.; Kim, B.H.; Kim, H.J. Energy storage of thermally reduced graphene oxide. Int. J. Hydrogen Energy 2014, 39, 3799–3804. [Google Scholar] [CrossRef]
- Atif, R.; Inam, F. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 2016, 7, 1174–1196. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhou, J.; Du, F. Synthesis of Highly Reduced Graphene Oxide for Supercapacitor. J. Nanomater. 2016, 2016, 4840301. [Google Scholar] [CrossRef]
- Singh, S.B.; De, M. Thermally exfoliated graphene oxide for hydrogen storage. Mater. Chem. Phys. 2020, 239, 122102. [Google Scholar] [CrossRef]
- Rajaura, R.S.; Srivastava, S.; Sharma, V.; Sharma, P.; Lal, C.; Singh, M.; Palsania, H.; Vijay, Y. Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. Int. J. Hydrogen Energy 2016, 41, 9454–9461. [Google Scholar] [CrossRef]
- Ngqalakwezi, A.; Nkazi, D.; Seifert, G.; Ntho, T. Effects of reduction of graphene oxide on the hydrogen storage capacities of metal graphene nanocomposite. Catal. Today 2020, 358, 338–344. [Google Scholar] [CrossRef]
- Yar, A.; Dennis, J.O.; Saheed, M.S.M.; Mohamed, N.M.; Irshad, M.I.; Mumtaz, A.; Jose, R. Physical reduction of graphene oxide for supercapacitive charge storage. J. Alloys Compd. 2020, 822, 153636. [Google Scholar] [CrossRef]
- Tran, T.X.; Choi, H.; Che, C.H.; Sul, J.H.; Kim, I.G.; Lee, S.-M.; Kim, J.-H.; Bin In, J. Laser-Induced Reduction of Graphene Oxide by Intensity-Modulated Line Beam for Supercapacitor Applications. ACS Appl. Mater. Interfaces 2018, 10, 39777–39784. [Google Scholar] [CrossRef]
- Shao, C.; Xu, T.; Gao, J.; Liang, Y.; Zhao, Y.; Qu, L. Flexible and integrated supercapacitor with tunable energy storage. Nanoscale 2017, 9, 12324–12329. [Google Scholar] [CrossRef]
- Kumar, R.; Savu, R.; Joanni, E.; Vaz, A.R.; Canesqui, M.A.; Singh, R.K.; Timm, R.A.; Kubota, L.T.; Moshkalev, S.A. Fabrication of Interdigitated Micro-Supercapacitor Devices by Direct Laser Writing onto Ultra-Thin, Flexible and Free-Standing Graphite Oxide Films. RSC Adv. 2016, 6, 84769–84776. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Y.; Ji, L.-C.; Xie, Y.-Q.; Wang, T.; Shi, W.-Z. Pulsed laser assisted reduction of graphene oxide. Carbon 2011, 49, 2431–2436. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron. Spectrosc. Relat. Phenom. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Bhattacharjya, D.; Kim, C.-H.; Kim, J.-H.; You, I.-K.; In, J.B.; Lee, S.-M. Fast and controllable reduction of graphene oxide by low-cost CO2 laser for supercapacitor application. Appl. Surf. Sci. 2018, 462, 353–361. [Google Scholar] [CrossRef]
- Mu, H.; Yu, W.; Yuan, J.; Lin, S.; Zhang, G. Interface and surface engineering of black phosphorus: A review for optoelectronic and photonic applications. Mater. Futures 2022, 1, 012301. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Naderi, H.R.; Norouzi, P.; Ganjali, M.R.; Gholipour-Ranjbar, H. Synthesis of a novel magnetite/nitrogen-doped reduced graphene oxide nanocomposite as high performance supercapacitor. Powder Technol. 2016, 302, 298–308. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, H.; Yang, Z.; Ji, C.; Zhang, G.; Tu, Y.; Du, G.; Cai, S.; Lin, S. Emerging Two-Dimensional Tellurene and Tellurides for Broadband Photodetectors. Small 2022, 18, 2200016. [Google Scholar] [CrossRef]
- Wan, Z.; Mu, H.; Dong, Z.; Hu, S.; Yu, W.; Lin, S.; Mokkapati, S. Self-Powered Mose2/Zno Heterojunction Photodetectors with Current Rectification Effect and Broadband Detection. Mater. Des. 2021, 212, 110185. [Google Scholar] [CrossRef]
- Wang, W.; Lu, L.; Li, Z.; Xie, Y. Laser induced 3D porous graphene dots: Bottom-up growth mechanism, multi-physics coupling effect and surface wettability. Appl. Surf. Sci. 2022, 592, 153242. [Google Scholar] [CrossRef]
- Dao, T.D.; Jeong, H.M. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene. Mater. Res. Bull. 2015, 70, 651–657. [Google Scholar] [CrossRef]
- Lee, S.-J.; Park, S.-J. Facile mass production of thermally reduced graphene oxide. Carbon Lett. 2012, 13, 48–50. [Google Scholar] [CrossRef]
- Velasco, A.; Ryu, Y.K.; Hamada, A.; de Andrés, A.; Calle, F.; Martinez, J. Laser-Induced Graphene Microsupercapacitors: Structure, Quality, and Performance. Nanomaterials 2023, 13, 788. [Google Scholar] [CrossRef] [PubMed]
- Li, G. Direct laser writing of graphene electrodes. J. Appl. Phys. 2020, 127, 010901. [Google Scholar] [CrossRef]
- Low, M.J.; Lee, H.; Lim, C.H.J.; Sandeep, C.S.; Murukeshan, V.M.; Kim, S.-W.; Kim, Y.-J. Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writing. Appl. Surf. Sci. 2020, 526, 146647. [Google Scholar] [CrossRef]
- Yang, S.J.; Kim, T.; Jung, H.; Park, C.R. The effect of heating rate on porosity production during the low temperature reduction of graphite oxide. Carbon 2013, 53, 73–80. [Google Scholar] [CrossRef]
- Sun, C.; Wen, B.; Bai, B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci. Bull. 2015, 60, 1807–1823. [Google Scholar] [CrossRef]
- Yang, N.; Jiang, X. Nanocarbons for DNA sequencing: A review. Carbon 2017, 115, 293–311. [Google Scholar] [CrossRef]
- Shiraz, H.G.; Tavakoli, O. Investigation of graphene-based systems for hydrogen storage. Renew. Sustain. Energy Rev. 2017, 74, 104–109. [Google Scholar] [CrossRef]
- Li, Q.; Guo, X.; Zhang, Y.; Zhang, W.; Ge, C.; Zhao, L.; Wang, X.; Zhang, H.; Chen, J.; Wang, Z.; et al. Porous graphene paper for supercapacitor applications. J. Mater. Sci. Technol. 2017, 33, 793–799. [Google Scholar] [CrossRef]
- Julkapli, N.M.; Bagheri, S. Graphene supported heterogeneous catalysts: An overview. Int. J. Hydrogen Energy 2015, 40, 948–979. [Google Scholar] [CrossRef]
- Arul, R.; Oosterbeek, R.N.; Robertson, J.; Xu, G.; Jin, J.; Simpson, M.C. The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement. Carbon 2016, 99, 423–431. [Google Scholar] [CrossRef]
- López-Díaz, D.; Holgado, M.L.; García-Fierro, J.L.; Velázquez, M.M. Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide. J. Phys. Chem. C 2017, 121, 20489–20497. [Google Scholar] [CrossRef]
- Ma, B.; Rodriguez, R.D.; Ruban, A.; Pavlov, S.; Sheremet, E. The correlation between electrical conductivity and second-order Raman modes of laser-reduced graphene oxide. Phys. Chem. Chem. Phys. 2019, 21, 10125–10134. [Google Scholar] [CrossRef] [PubMed]
- Kaniyoor, A.; Ramaprabhu, S. A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012, 2, 032183. [Google Scholar] [CrossRef]
- Rai, S.; Bhujel, R.; Swain, B.P. Electrochemical Analysis of Graphene Oxide and Reduced Graphene Oxide for Super Capacitor Applications. Presented at the 2018 IEEE Electron Devices Kolkata Conference (EDKCON), Kolkata, India, 24–25 November 2018; pp. 489–492. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.-J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 2013, 53, 38–49. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.M. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Eigler, S.; Dotzer, C.; Hirsch, A. Visualization of defect densities in reduced graphene oxide. Carbon 2012, 50, 3666–3673. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef]
- López-Polín, G.; Gómez-Navarro, C.; Parente, V.; Guinea, F.; Katsnelson, M.I.; Perez-Murano, F.; Gomez-Herrero, J. Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 2015, 11, 26–31. [Google Scholar] [CrossRef]
- Sunnardianto, G.K.; Bokas, G.; Hussein, A.; Walters, C.; Moultos, O.A.; Dey, P. Efficient hydrogen storage in defective graphene and its mechanical stability: A combined density functional theory and molecular dynamics simulation study. Int. J. Hydrogen Energy 2021, 46, 5485–5494. [Google Scholar] [CrossRef]
- Yadav, S.; Zhu, Z.; Singh, C.V. Defect engineering of graphene for effective hydrogen storage. Int. J. Hydrogen Energy 2014, 39, 4981–4995. [Google Scholar] [CrossRef]
- DoE, U.S. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. US Drive 2017, 1, 1–29. [Google Scholar]
Method (y) | Instrument (x) | Parameter (z) | ||
---|---|---|---|---|
Temperature (°C) | Power (W) | Exposure Time (ms) | ||
Thermal reduction x-TrGO-z | Electrical furnace EF-y-z | EF-TrGO-250 | ||
EF-TrGO-450 | ||||
Fusion instrument FI-y-z | FI-TrGO-250 | |||
FI-TrGO-450 | ||||
Tubular reactor TR-y-z | TR-TrGO-250 | |||
TR-TrGO-450 | ||||
Heating plate HP-y-z | HP-TrGO-250 | |||
HP-TrGO-450 | ||||
Microwave oven MO-y-z | MO-TrGO-320 | |||
MO-TrGO-640 | ||||
Laser reduction x-LrGO-z | IR laser (10.6 µm) IR-y-z | IR-LrGO-1.6 | ||
IR-LrGO-1.8 | ||||
IR-LrGO-2.0 | ||||
UV laser (405 nm) UV-y-z | UV-LrGO-2 | |||
UV-LrGO-10 | ||||
UV-LrGO-50 |
Sample | (002) Peak | (100) Peak | |||||||
---|---|---|---|---|---|---|---|---|---|
2θ | FWHM 2θ | d (nm) | D1 (nm) | n | 2θ | FWHM 2θ | d (nm) | D2 (nm) | |
EF-TrGO-250 | 23.3 | 4.54 | 0.39 | 4 | 10 | 43.3 | 2.5 | 0.210 | 14 |
EF-TrGO-450 | 24.3 | 3.40 | 0.37 | 5 | 13 | 43.0 | 2.8 | 0.210 | 13 |
FI-TrGO-250 | 23.5 | 4.13 | 0.38 | 4 | 11 | 43.3 | 2.4 | 0.209 | 15 |
FI-TrGO-450 | 23.7 | 3.67 | 0.37 | 5 | 12 | 43.0 | 2.6 | 0.211 | 13 |
TR-TrGO-250 | 23.7 | 4.94 | 0.40 | 3 | 9 | 43.3 | 2.7 | 0.211 | 13 |
TR-TrGO-450 | 24.6 | 5.54 | 0.38 | 3 | 8 | 43.2 | 2.6 | 0.211 | 14 |
HP-TrGO-250 | 23.3 | 4.82 | 0.39 | 4 | 9 | 43.1 | 2.4 | 0.211 | 15 |
HP-TrGO-450 | 23.9 | 5.78 | 0.37 | 3 | 8 | 43.6 | 2.7 | 0.207 | 13 |
MO-TrGO-320 | 23.5 | 3.84 | 0.38 | 4 | 12 | 42.3 | 2.0 | 0.214 | 18 |
MO-TrGO-640 | 24.5 | 4.62 | 0.36 | 4 | 10 | 43.3 | 2.5 | 0.211 | 14 |
IR-LrGO-1.6 | 25.9 | 1.07 | 0.34 | 16 | 46 | 42.2 | 0.80 | 0.214 | 43 |
IR-LrGO-1.8 | 25.8 | 1.74 | 0.34 | 10 | 28 | 42.3 | 0.80 | 0.214 | 43 |
IR-LrGO-2.0 | 25.8 | 0.94 | 0.34 | 18 | 53 | 42.2 | 0.94 | 0.214 | 37 |
UV-LrGO-2 | 26.6 | 0.30 | 0.33 | 57 | 169 | 42.4 | 0.49 | 0.213 | 71 |
UV-LrGO-10 | 26.6 | 0.27 | 0.34 | 64 | 190 | 42.4 | 0.49 | 0.213 | 71 |
UV-LrGO-50 | 26.4 | 0.54 | 0.34 | 32 | 94 | 43.3 | 0.49 | 0.209 | 71 |
Sample | SSA (m2 g−1) | Micropore Volume (cm3 g−1) |
---|---|---|
EF-TrGO-250 | 391 | 0.020 |
EF-TrGO-450 | 468 | 0.044 |
FI-TrGO-250 | 450 | 0.024 |
FI-TrGO-450 | 553 | 0.032 |
TR-TrGO-250 | 340 | 0.016 |
TR-TrGO-450 | 373 | 0.023 |
HP-TrGO-250 | 244 | 0.0070 |
HP-TrGO-450 | 682 | 0.025 |
MO-TrGO-320 | 39 | 0.0040 |
MO-TrGO-640 | 322 | 0.021 |
IR-LrGO-1.6 | 68 | 0.0026 |
IR-LrGO-1.8 | 84 | 0.0019 |
IR-LrGO-2.0 | 75 | 0.0013 |
UV-LrGO-2 | 49 | 0.0080 |
UV-LrGO-10 | 107 | 0.010 |
UV-LrGO-50 | 133 | 0.034 |
Sample | ID/IG | I2D/IG |
---|---|---|
EF-TrGO-250 | 1.008 | 0.189 |
EF-TrGO-450 | 1.044 | 0.168 |
FI-TrGO-250 | 1.020 | 0.158 |
FI-TrGO-450 | 0.979 | 0.169 |
TR-TrGO-250 | 1.008 | 0.178 |
TR-TrGO-450 | 1.023 | 0.152 |
HP-TrGO-250 | 1.056 | 0.139 |
HP-TrGO-450 | 0.964 | 0.198 |
MO-TrGO-320 | 0.975 | 0.169 |
MO-TrGO-640 | 1.035 | 0.152 |
IR-LrGO-1.6 | 1.143 | 0.092 |
IR-LrGO-1.8 | 1.028 | 0.093 |
IR-LrGO-2.0 | 1.233 | 0.169 |
UV-LrGO-2 | 1.040 | 0.182 |
UV-LrGO-10 | 1.067 | 0.152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Mancebo, M.B.; Fernández-Martínez, R.; Ruiz-Perona, A.; Rubio, V.; Bastante, P.; García-Pérez, F.; Borlaf, F.; Sánchez, M.; Hamada, A.; Velasco, A.; et al. Comparison of Thermal and Laser-Reduced Graphene Oxide Production for Energy Storage Applications. Nanomaterials 2023, 13, 1391. https://doi.org/10.3390/nano13081391
Gómez-Mancebo MB, Fernández-Martínez R, Ruiz-Perona A, Rubio V, Bastante P, García-Pérez F, Borlaf F, Sánchez M, Hamada A, Velasco A, et al. Comparison of Thermal and Laser-Reduced Graphene Oxide Production for Energy Storage Applications. Nanomaterials. 2023; 13(8):1391. https://doi.org/10.3390/nano13081391
Chicago/Turabian StyleGómez-Mancebo, M. Belén, Rodolfo Fernández-Martínez, Andrea Ruiz-Perona, Verónica Rubio, Pablo Bastante, Fernando García-Pérez, Fernando Borlaf, Miguel Sánchez, Assia Hamada, Andrés Velasco, and et al. 2023. "Comparison of Thermal and Laser-Reduced Graphene Oxide Production for Energy Storage Applications" Nanomaterials 13, no. 8: 1391. https://doi.org/10.3390/nano13081391
APA StyleGómez-Mancebo, M. B., Fernández-Martínez, R., Ruiz-Perona, A., Rubio, V., Bastante, P., García-Pérez, F., Borlaf, F., Sánchez, M., Hamada, A., Velasco, A., Ryu, Y. K., Calle, F., Bonales, L. J., Quejido, A. J., Martínez, J., & Rucandio, I. (2023). Comparison of Thermal and Laser-Reduced Graphene Oxide Production for Energy Storage Applications. Nanomaterials, 13(8), 1391. https://doi.org/10.3390/nano13081391