Hybrid Nanomaterial of Graphene Oxide Quantum Dots with Multi-Walled Carbon Nanotubes for Simultaneous Voltammetric Determination of Four DNA Bases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instrumentation
2.3. Synthesis of GOQDs
2.4. Synthesis of GOQD-MWCNT Hybrid Nanomaterial
2.5. Modification of GCE Surface with GOQD-MWCNT
2.6. Artificial Saliva Sample Preparation
3. Results and Discussion
3.1. TEM and AFM Characterization
3.2. Comparison Study
3.3. pH Effect
3.4. Interference Study
3.5. Calibration Study
3.6. Artificial Saliva Sample Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivandini, T.A.; Honda, K.; Rao, T.N.; Fujishima, A.; Einaga, Y. Simultaneous Detection of Purine and Pyrimidine at Highly Boron-Doped Diamond Electrodes by Using Liquid Chromatography. Talanta 2007, 71, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.L.; Khor, S.M. Graphite-Based Nanocomposite Electrochemical Sensor for Multiplex Detection of Adenine, Guanine, Thymine, and Cytosine: A Biomedical Prospect for Studying DNA Damage. Anal. Chem. 2017, 89, 10004–10012. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Zhao, F.; Li, J.; Liu, L.; Zeng, B. Characterization of Hydrophobic Ionic Liquid-Carbon Nanotubes-Gold Nanoparticles Composite Film Coated Electrode and the Simultaneous Voltammetric Determination of Guanine and Adenine. Electrochim. Acta 2008, 53, 7781–7788. [Google Scholar] [CrossRef]
- Lin, L.; Liu, Y.; Tang, L.; Li, J. Electrochemical DNA Sensor by the Assembly of Graphene and DNA-Conjugated Gold Nanoparticles with Silver Enhancement Strategy. Analyst 2011, 136, 4732. [Google Scholar] [CrossRef]
- Wang, S.; Ferrag, C.; Noroozifar, M.; Kerman, K. Simultaneous Determination of Four DNA Bases at Graphene Oxide/Multi-Walled Carbon Nanotube Nanocomposite-Modified Electrode. Micromachines 2020, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Q.; Meng, Z.; Noroozifar, M.; Kerman, K. Methylene Blue-Modified Biochar from Sugarcane for the Simultaneous Electrochemical Detection of Four DNA Bases. Chemosensors 2023, 11, 169. [Google Scholar] [CrossRef]
- Zong, S.Y.; Han, H.; Wang, B.; Li, N.; Dong, T.T.X.; Zhang, T.; Tsim, K.W.K.; McPhee, D.J. Fast Simultaneous Determination of 13 Nucleosides and Nucleobases in Cordyceps Sinensis by UHPLC-ESI-MS/MS. Molecules 2015, 20, 21816–21825. [Google Scholar] [CrossRef]
- Friedeck, D.; Adam, T.; Bartk, P. Capillary Electrophoresis for Detection of Inherited Disorders of Purine and Pyrimidine Metabolism: A Selective Approach. Electrophoresis 2002, 23, 565–571. [Google Scholar] [CrossRef]
- Wang, P.; Ren, J. Separation of Purine and Pyrimidine Bases by Capillary Electrophoresis Using β-Cyclodextrin as an Additive. J. Pharm. Biomed. Anal. 2004, 34, 277–283. [Google Scholar] [CrossRef]
- Li, T.; Li, B.; Dong, S. Aptamer-Based Label-Free Method for Hemin Recognition and DNA Assay by Capillary Electrophoresis with Chemiluminescence Detection. Anal. Bioanal. Chem. 2007, 389, 887–893. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhan, L.; Hou, C.; Wang, Z. Nanostructured Metal-Enhanced Raman Spectroscopy for DNA Base Detection. IEEE Photonics J. 2012, 4, 1333–1339. [Google Scholar] [CrossRef]
- Huang, Q.; Kaiser, K.; Benner, R. A Simple High Performance Liquid Chromatography Method for the Measurement of Nucleobases and the RNA and DNA Content of Cellular Material. Limnol. Oceanogr. Methods 2012, 10, 608–616. [Google Scholar] [CrossRef]
- Brohi, R.O.Z.; Khuhawar, M.Y.; Channa, A.; Laghari, A.J.; Abbasi, K. Gas Chromatographic Determination of Purines and Pyrimidines from DNA Using Ethyl Chloroformate as Derivatizing Reagent. Pakistan J. Anal. Environ. Chem. 2016, 17, 50–57. [Google Scholar] [CrossRef]
- Brohi, R.O.Z.Z.; Khuhawar, M.Y.; Khuhawar, T.M.J. GC-FID Determination of Nucleobases Guanine, Adenine, Cytosine, and Thymine from DNA by Precolumn Derivatization with Isobutyl Chloroformate. J. Anal. Sci. Technol. 2016, 7, 10. [Google Scholar] [CrossRef]
- Tamiya, E. Portable Electrochemical DNA Sensors Based on Gene Amplification Reactions to Screen and Identify Pathogen and SNPs. Sensors 2022, 22, 1865. [Google Scholar] [CrossRef] [PubMed]
- Lichtenberg, J.Y.; Ling, Y.; Kim, S. Non-Specific Adsorption Reduction Methods in Biosensing. Sensors 2019, 19, 2488. [Google Scholar] [CrossRef]
- Oliveira-Brett, A.M.; Piedade, J.A.P.; Silva, L.A.; Diculescu, V.C. Voltammetric Determination of All DNA Nucleotides. Anal. Biochem. 2004, 332, 321–329. [Google Scholar] [CrossRef]
- Suprun, E.V.; Kutdusova, G.R.; Khmeleva, S.A.; Radko, S.P. Towards deeper understanding of DNA electrochemical oxidation on carbon electrodes. Electrochem. Commun. 2021, 124, 106947. [Google Scholar] [CrossRef]
- Arul, P.; Huang, S.T.; Gowthaman, N.S.; Shankar, S. Gowthaman, Sekar Shankar, Simultaneous electrochemical determination of DNA nucleobases using AgNPs embedded covalent organic framework. Microchimica Acta 2021, 188, 358. [Google Scholar] [CrossRef]
- Wang, J.; Musameh, M. Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors. Anal. Chem. 2003, 75, 2075–2079. [Google Scholar] [CrossRef]
- Banks, C.E.; Compton, R.G. New Electrodes for Old: From Carbon Nanotubes to Edge Plane Pyrolytic Graphite. Analyst 2006, 131, 15–21. [Google Scholar] [CrossRef]
- Wang, J. Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis 2005, 17, 7–14. [Google Scholar] [CrossRef]
- Hashemi, P.; Dankoski, E.C.; Petrovic, J.; Keithley, R.B.; Wightman, R.M. Voltammetric Detection of 5-Hydroxytryptamine Release in the Rat Brain. Anal. Chem. 2009, 81, 9462–9471. [Google Scholar] [CrossRef] [PubMed]
- Swamy, B.E.K.; Venton, B.J. Carbon Nanotube-Modified Microelectrodes for Simultaneous Detection of Dopamine and Serotonin in Vivo. Analyst 2007, 132, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Yoo, G.; Chang, Y.W.; Kim, H.J.; Jose, J.; Kim, E.; Pyun, J.C.; Yoo, K.H. A Carbon Nanotube Metal Semiconductor Field Effect Transistor-Based Biosensor for Detection of Amyloid-Beta in Human Serum. Biosens. Bioelectron. 2013, 50, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.M.; Nguyen, C.V.; Meyyappan, M. Carbon Nanotube Scanning Probe for Imaging in Aqueous Environment. IEEE Trans. Nanobioscience 2004, 3, 56–60. [Google Scholar] [CrossRef]
- Kumar, Y.R.; Deshmukh, K.; Sadasivuni, K.K.; Pasha, S.K.K. Graphene Quantum Dot Based Materials for Sensing, Bio-Imaging and Energy Storage Applications: A Review. RSC Adv. 2020, 10, 23861–23898. [Google Scholar] [CrossRef]
- Tajik, S.; Dourandish, Z.; Zhang, K.; Beitollahi, H.; Van Le, Q.; Jang, H.W.; Shokouhimehr, M. Carbon and Graphene Quantum Dots: A Review on Syntheses, Characterization, Biological and Sensing Applications for Neurotransmitter Determination. RSC Adv. 2020, 10, 15406–15429. [Google Scholar] [CrossRef]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials 2019, 9, 634. [Google Scholar] [CrossRef]
- Li, M.; Chen, T.; Gooding, J.J.; Liu, J. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens. 2019, 4, 1732–1748. [Google Scholar] [CrossRef]
- Zhou, J.; Li, S.; Noroozifar, M.; Kerman, K. Graphene Oxide Nanoribbons in Chitosan for Simultaneous Electrochemical Detection of Guanine, Adenine, Thymine and Cytosine. Biosensors 2020, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Asrat, T.M.; Cho, W.; Liu, F.A.; Shapiro, S.M.; Bracht, J.R.; Zestos, A.G. Direct Detection of DNA and RNA on Carbon Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry. ACS Omega 2021, 6, 6571–6581. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.X.; Hoh, H.Y.; Ang, P.K.; Loh, K.P. Direct Voltammetric Detection of DNA and PH Sensing on Epitaxial Graphene: An Insight into the Role of Oxygenated Defects. Anal. Chem. 2010, 82, 7387–7393. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2001; ISBN 0471043729. [Google Scholar]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Liu, B.; Xie, J.; Ma, H.; Zhang, X.; Pan, Y.; Lv, J.; Ge, H.; Ren, N.; Su, H.; Xie, X.; et al. From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots. Small 2017, 13, 1601001. [Google Scholar] [CrossRef]
- Madsen, K.D.; Sander, C.; Baldursdottir, S.; Pedersen, A.M.L.; Jacobsen, J. Development of an Ex Vivo Retention Model Simulating Bioadhesion in the Oral Cavity Using Human Saliva and Physiologically Relevant Irrigation Media. Int. J. Pharm. 2013, 448, 373–381. [Google Scholar] [CrossRef]
- Melo, J.P.; Ríos, P.L.; Povea, P.; Morales-Verdejo, C.; Camarada, M.B. Graphene Oxide Quantum Dots as the Support for the Synthesis of Gold Nanoparticles and Their Applications as New Catalysts for the Decomposition of Composite Solid Propellants. ACS Omega 2018, 3, 7278–7287. [Google Scholar] [CrossRef]
- Kang, S.; Kim, K.M.; Jung, K.; Son, Y.; Mhin, S.; Ryu, J.H.; Shim, K.B.; Lee, B.; Han, H.; Song, T. Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: Facile and Green Approach. Sci. Rep. 2019, 9, 4101. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, Z.; Li, J.; Ruan, H.; Ma, Y.; Yang, Z.; Qu, Y. Synergistically Enhanced Activity of Graphene Quantum Dot/Multi-Walled Carbon Nanotube Composites as Metal-Free Catalysts for Oxygen Reduction Reaction. Nanoscale 2014, 6, 2603–2607. [Google Scholar] [CrossRef]
- Horvath, S.; Fernandez, L.E.; Appel, A.M.; Hammes-Schiffer, S. PH-Dependent Reduction Potentials and Proton-Coupled Electron Transfer Mechanisms in Hydrogen-Producing Nickel Molecular Electrocatalysts. Inorg. Chem. 2013, 52, 3643–3652. [Google Scholar] [CrossRef]
- Patel, B.R.; Noroozifar, M.; Kerman, K. Prussian Blue-Doped Nanosized Polyaniline for Electrochemical Detection of Benzenediol Isomers. Anal. Bioanal. Chem. 2020, 412, 1769–1784. [Google Scholar] [CrossRef]
- Shahbakhsh, M.; Noroozifar, M. 2D-Single-Crystal Hexagonal Gold Nanosheets for Ultra-Trace Voltammetric Determination of Captopril. Microchim. Acta 2019, 186, 195. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, H.; Noroozifar, M.; Kerman, K. Epigallocatechin Gallate-Modified Graphite Paste Electrode for Simultaneous Detection of Redox-Active Biomolecules. Sensors 2017, 18, 23. [Google Scholar] [CrossRef]
- Tohidinia, M.; Noroozifar, M. Investigation of Carbon Allotropes for Simultaneous Determination of Ascorbic Acid, Epinephrine, Uric Acid, Nitrite and Xanthine. Int. J. Electrochem. Sci. 2018, 13, 2310–2328. [Google Scholar] [CrossRef]
- Cryan, M.T.; Ross, A.E. Subsecond Detection of Guanosine Using Fast-Scan Cyclic Voltammetry. Analyst 2019, 144, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Swamy, B.E.K.; Venton, B.J. Subsecond Detection of Physiological Adenosine Concentrations Using Fast-Scan Cyclic Voltammetry. Anal. Chem. 2007, 79, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Jankowska-Śliwińska, J.; Dawgul, M.; Kruk, J.; Pijanowska, D.G. Comparison of Electrochemical Determination of Purines and Pyrimidines by Means of Carbon, Graphite and Gold Paste Electrodes. Int. J. Electrochem. Sci. 2017, 12, 2329–2343. [Google Scholar] [CrossRef]
- Cryan, M.T.; Ross, A.E. Scalene Waveform for Codetection of Guanosine and Adenosine Using Fast-Scan Cyclic Voltammetry. Anal. Chem. 2019, 91, 5987–5993. [Google Scholar] [CrossRef]
- Qin, X.; Liu, X.; Hong-Bo, L.; Li-Na, Y.; Xiaoya, H. Electrochemical Determination of Purine and Pyrimidine DNA Bases Based on the Recognition Properties of Azocalix[4]Arene. Biosens. Bioelectron. 2013, 42, 355–361. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Wei, Y.; Xing, T.; Cao, T.; Wu, S.; Zhu, F. A Copper-Based Metal-Organic Framework/Graphene Nanocomposite for the Sensitive and Stable Electrochemical Detection of DNA Bases. Analyst 2020, 145, 1933–1942. [Google Scholar] [CrossRef]
- Yin, H.; Zhou, Y.; Ma, Q.; Ai, S.; Ju, P.; Zhu, L.; Lu, L. Electrochemical Oxidation Behavior of Guanine and Adenine on Graphene-Nafion Composite Film Modified Glassy Carbon Electrode and the Simultaneous Determination. Process Biochem. 2010, 45, 1707–1712. [Google Scholar] [CrossRef]
- Yari, A.; Derki, S. New MWCNT-Fe3O4@PDA-Ag Nanocomposite as a Novel Sensing Element of an Electrochemical Sensor for Determination of Guanine and Adenine Contents of DNA. Sens. Actuators B Chem. 2016, 227, 456–466. [Google Scholar] [CrossRef]
- Thangaraj, R.; Senthil Kumar, A. Simultaneous Detection of Guanine and Adenine in DNA and Meat Samples Using Graphitized Mesoporous Carbon Modified Electrode. J. Solid State Electrochem. 2013, 17, 583–590. [Google Scholar] [CrossRef]
- Anu Prathap, M.U.; Srivastava, R.; Satpati, B. Simultaneous Detection of Guanine, Adenine, Thymine, and Cytosine at Polyaniline/MnO2 Modified Electrode. Electrochim. Acta 2013, 114, 285–295. [Google Scholar] [CrossRef]
Electrode | Analytes | LOD (µM) | Linear Range (µM) | Reference |
---|---|---|---|---|
Graphene-Nafion modified GCE | G | 0.6 | 2–200 | [52] |
A | 0.8 | 5–200 | ||
MWCNT-Fe3O4 coated with PDA-Ag modified GPE | G | 1.5 | 8–130 | [53] |
A | 5.7 | 10–120 | ||
GMC modified GCE | G | 0.8 | 25–150 | [54] |
A | 0.6 | 25–200 | ||
PANI-MnO2 modified GCE | G | 4.8 | 10–100 | [55] |
A | 2.9 | 10–100 | ||
T | 1.3 | 10–100 | ||
C | 1.3 | 10–100 | ||
MWCNT-graphite deposited with Au-rGO modified GPE | G | 3.3 | 3–170 | [2] |
A | 3.7 | 3–190 | ||
T | 7.9 | 7.5–800 | ||
C | 9.0 | 9–900 | ||
GO/MWCNT modified GCE | G | 0.1 | 1–78 | [5] |
A | 0.4 | 2–119.5 | ||
T | 1.7 | 12.5–227.5 | ||
C | 0.8 | 5–132.5 | ||
GCE/GOQDs-MWCNT | G | 0.4 | 2.8–50.0 | This work |
A | 0.2 | 0.8–50.0 | ||
T | 1.6 | 8.0–500.0 | ||
C | 5.6 | 8.0–500.0 |
Real Sample | Analytes | Detected Concentration (µM) | Concentration (µM) | % Recovery |
---|---|---|---|---|
G | 4.4 | 4.3 | 97.7 | |
Artificial saliva | A | 4.4 | 4.6 | 104.5 |
(Sample 1) | T | 44.0 | 45.2 | 102.7 |
C | 44.0 | 46.3 | 105.2 | |
G | 10.8 | 10.4 | 96.3 | |
Artificial saliva | A | 10.8 | 11.5 | 106.5 |
(Sample 2) | T | 92.0 | 93.9 | 102.1 |
C | 92.0 | 97.6 | 106.1 | |
G | 20.4 | 20.8 | 102.0 | |
Artificial saliva | A | 20.4 | 20.5 | 100.5 |
(Sample 3) | T | 300.0 | 305.2 | 101.7 |
C | 300.0 | 306.8 | 102.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, Q.; Riley, C.; Noroozifar, M.; Kerman, K. Hybrid Nanomaterial of Graphene Oxide Quantum Dots with Multi-Walled Carbon Nanotubes for Simultaneous Voltammetric Determination of Four DNA Bases. Nanomaterials 2023, 13, 1509. https://doi.org/10.3390/nano13091509
Hassan Q, Riley C, Noroozifar M, Kerman K. Hybrid Nanomaterial of Graphene Oxide Quantum Dots with Multi-Walled Carbon Nanotubes for Simultaneous Voltammetric Determination of Four DNA Bases. Nanomaterials. 2023; 13(9):1509. https://doi.org/10.3390/nano13091509
Chicago/Turabian StyleHassan, Qusai, Chevon Riley, Meissam Noroozifar, and Kagan Kerman. 2023. "Hybrid Nanomaterial of Graphene Oxide Quantum Dots with Multi-Walled Carbon Nanotubes for Simultaneous Voltammetric Determination of Four DNA Bases" Nanomaterials 13, no. 9: 1509. https://doi.org/10.3390/nano13091509
APA StyleHassan, Q., Riley, C., Noroozifar, M., & Kerman, K. (2023). Hybrid Nanomaterial of Graphene Oxide Quantum Dots with Multi-Walled Carbon Nanotubes for Simultaneous Voltammetric Determination of Four DNA Bases. Nanomaterials, 13(9), 1509. https://doi.org/10.3390/nano13091509