LSP-SPP Coupling Structure Based on Three-Dimensional Patterned Sapphire Substrate for Surface Enhanced Raman Scattering Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SPP Composite Structures Composed of Au/Al2O3/Ag NPs
2.3. Characterization of Substrate Morphology and SERS Detection
3. Results and Discussion
3.1. Structure Characterization
3.2. Simulation and Theory
3.3. Performance Exploration
3.4. Hydrophobicity Characterization and Self-Cleaning Test
3.5. Outlook and Development
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, S.; Hu, Z.; Zhang, Y.; Wang, D.; Gong, Z.; Fan, M. Differentiation and identification structural similar chemicals using SERS coupled with different chemometric methods: The example of fluoroquinolones. Microchem. J. 2022, 183, 108023. [Google Scholar] [CrossRef]
- Negri, P.; Flaherty, R.J.; Dadaa, O.O.; Schultz, Z.D. Ultrasensitive online SERS detection of structural isomers separated by capillary zone electrophoresis. Chem. Commun. 2014, 50, 2707–2710. [Google Scholar] [CrossRef] [PubMed]
- Schulte, J.P.; Grass, S.; Treuel, L. Adsorption of dicarboxylic acids onto nano-structured silver surfaces—surface-enhanced Raman scattering studies of pH-dependent adsorption geometries. J. Raman Spectrosc. 2013, 44, 247–254. [Google Scholar] [CrossRef]
- Olson, L.G.; Harris, J.M. Surface-Enhanced Raman Spectroscopy Studies of Surfactant Adsorption to a Hydrophobic Interface. Appl. Spectrosc. 2008, 62, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zheng, G.; Li, J. Raman spectral study of metal–cytosine complexes: A density functional theoretical (DFT) approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1739–1746. [Google Scholar] [CrossRef]
- Garrido, C.; Aliaga, A.E.; Gómez-Jeria, J.S.; Cárcamo, J.J.; Clavijo, E.; Campos-Vallette, M.M. Interaction of the C-terminal peptide from pigeon cytochrome C with silver nanoparticles. A Raman, SERS and theoretical study. Vib. Spectrosc. 2012, 61, 94–98. [Google Scholar] [CrossRef]
- Jiang, X.; Campion, A. Chemical effects in surface-enhanced raman scattering: Pyridine chemisorbed on silver adatoms on Rh (100). Chem. Phys. Lett. 1987, 140, 95–100. [Google Scholar] [CrossRef]
- Itoh, T.; Yamamoto, Y.S. Between plasmonics and surface-enhanced resonant Raman spectroscopy: Toward single-molecule strong coupling at a hotspot. Nanoscale 2021, 13, 1566–1580. [Google Scholar] [CrossRef]
- Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250. [Google Scholar] [CrossRef]
- Yang, W.; Li, Z.; Lu, Z.; Yu, J.; Huo, Y.; Man, B.; Pan, J.; Si, H.; Jiang, S.; Zhang, C. Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS performance and DNA molecular detection. Opt. Express 2019, 27, 3000–3013. [Google Scholar] [CrossRef]
- Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [PubMed]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Lee, S.; Choi, I. Fabrication Strategies of 3D Plasmonic Structures for SERS. BioChip J. 2019, 13, 30–42. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, X.; Dai, Z.; Wu, W.; Zhang, X.; Fu, L.; Jiang, C. Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles. Nanoscale 2017, 9, 3114–3120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Luo, C.; Liu, Z.; Chen, Y.; Dong, S.; Jiang, C.; Yang, S.; Wang, F.; Xiao, X. Volume-Enhanced Raman Scattering Detection of Viruses. Small 2019, 15, 1805516. [Google Scholar] [CrossRef]
- Dai, Z.; Xiao, X.; Liao, L.; Zheng, J.; Mei, F.; Wu, W.; Ying, J.; Ren, F.; Jiang, C. Large-area, well-ordered, uniform-sized bowtie nanoantenna arrays for surface enhanced Raman scattering substrate with ultra-sensitive detection. Appl. Phys. Lett. 2013, 103, 041903. [Google Scholar] [CrossRef]
- Liu, G.L.; Lee, L.P. Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl. Phys. Lett. 2005, 87, 074101. [Google Scholar] [CrossRef]
- Zha, Z.P.; Liu, R.C.; Yang, W.; Li, C.; Gao, J.J.; Shafi, M.; Fan, X.W.; Li, Z.; Du, X.J.; Jiang, S.Z. Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al2O3. Opt. Express 2021, 29, 8890–8901. [Google Scholar] [CrossRef]
- Stewart, M.P.; Buriak, J.M. Chemical and Biological Applications of Porous Silicon Technology. Adv. Mater. 2000, 12, 859–869. [Google Scholar]
- Xin, L.; Gambarota, G.; Cudalbu, C.; Mlynárik, V.; Gruetter, R. Single spin-echo T2 relaxation times of cerebral metabolites at 14.1 T in the in vivo rat brain. Magn. Reson. Mater. Phys. Biol. Med. 2013, 26, 549–554. [Google Scholar] [CrossRef]
- Zhang, C.; Man, B.Y.; Jiang, S.Z.; Yang, C.; Liu, M.; Chen, C.S.; Xu, S.C.; Qiu, H.W.; Li, Z. SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure. Appl. Surf. Sci. 2015, 347, 668–672. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, S.Z.; Huo, Y.Y.; Liu, A.H.; Xu, S.C.; Liu, X.Y.; Sun, Z.C.; Xu, Y.Y.; Li, Z.; Man, B.Y. SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure. Opt. Express 2015, 23, 24811–24821. [Google Scholar] [CrossRef] [PubMed]
- Vernon, K.C.; Davis, T.J.; Scholes, F.H.; Gómez, D.E.; Lau, D. Physical mechanisms behind the SERS enhancement of pyramidal pit substrates. J. Raman Spectrosc. 2010, 41, 1106–1111. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, H.; Jones, R.; Feng, Y.; Gong, K.; Li, K.; Fang, X.; Tahir, M.A.; Valev, V.K.; Zhang, L. Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics <1 μm in the Environment. Environ. Sci. Technol. 2020, 54, 15594–15603. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.F.; Liu, C.D.; Yu, J.; Li, Z.; Liu, L.; Li, C.H.; Xu, S.C.; Li, W.F.; Man, B.Y.; Zhang, C. Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing. Nanophotonics 2020, 9, 4761–4773. [Google Scholar] [CrossRef]
- Shafi, M.; Zhou, M.X.; Duan, P.Y.; Liu, W.Y.; Zhang, W.J.; Zha, Z.P.; Gao, J.J.; Wali, S.; Jiang, S.Z.; Man, B.Y.; et al. Highly sensitive and recyclable surface-enhanced Raman scattering (SERS) substrates based on photocatalytic activity of ZnSe nanowires. Sens. Actuators B-Chem. 2022, 356, 131360. [Google Scholar] [CrossRef]
- Kim, K.; Lee, K.J.; Jo, N.R.; Jo, E.J.; Shin, Y.B.; Kim, M.G. Wafer-Scale LSPR Substrate: Oblique Deposition of Gold on a Patterned Sapphire Substrate. Biosensors 2022, 12, 158. [Google Scholar] [CrossRef]
- Lévêque, G.; Martin, O.J.F. Optical interactions in a plasmonic particle coupled to a metallic film. Opt. Express 2006, 14, 9971–9981. [Google Scholar] [CrossRef]
- Wind, M.M.; Vlieger, J.; Bedeaux, D. The polarizability of a truncated sphere on a substrate I. Phys. A Stat. Mech. Appl. 1987, 141, 33–57. [Google Scholar] [CrossRef]
- Yuan, H.; Ji, W.; Chu, S.; Qian, S.; Wang, F.; Masson, J.-F.; Han, X.; Peng, W. Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles. Biosens. Bioelectron. 2018, 117, 637–643. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Y.; Wu, Q.; Ma, P.; Zhang, H.; Wang, Y.; Song, D. Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG. Talanta 2016, 146, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, S.; Huo, Y.; Ning, T.; Liu, A.; Zhang, C.; He, Y.; Wang, M.; Li, C.; Man, B. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale 2018, 10, 5897–5905. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; He, Q.; Sun, S.; Zhou, L. High-efficiency surface plasmon meta-couplers: Concept and microwave-regime realizations. Light Sci. Appl. 2016, 5, e16003. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, H.T.; Kurokawa, Y. Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity. Phys. Rev. Lett. 2006, 96, 097401. [Google Scholar] [CrossRef]
- Gross, P.; Esmann, M.; Becker, S.F.; Vogelsang, J.; Talebi, N.; Lienau, C. Plasmonic nanofocusing—grey holes for light. Adv. Phys.—X 2016, 1, 297–330. [Google Scholar] [CrossRef]
- Stockman, M.I. Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides. Phys. Rev. Lett. 2004, 93, 137404, Erratum in Phys. Rev. Lett. 2011, 106, 019901. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Sridharan, G.; Shankar, A.A. Toluidine blue: A review of its chemistry and clinical utility. J. Oral Maxillofac. Pathol. JOMFP 2012, 16, 251–255. [Google Scholar] [CrossRef]
- Murugan, E.; Kumar, S.S.; Reshna, K.M.; Govindaraju, S. Highly sensitive, stable g-CN decorated with AgNPs for SERS sensing of toluidine blue and catalytic reduction of crystal violet. J. Mater. Sci. 2019, 54, 5294–5310. [Google Scholar] [CrossRef]
- McLane, J.; Wu, C.; Khine, M. Enhanced Detection of Protein in Urine by Droplet Evaporation on a Superhydrophobic Plastic. Adv. Mater. Interfaces 2015, 2, 1400034. [Google Scholar] [CrossRef]
- Zhang, H.H.; Zhou, F.; Liu, M.; Liu, D.L.; Men, D.D.; Cai, W.P.; Duan, G.T.; Li, Y. Spherical Nanoparticle Arrays with Tunable Nanogaps and Their Hydrophobicity Enhanced Rapid SERS Detection by Localized Concentration of Droplet Evaporation. Adv. Mater. Interfaces 2015, 2, 1500031. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Kang, H.S.; Zhao, W.Q.; Chen, Y.L.; Ma, L.; Ding, S.J.; Chen, X.B.; Wang, Q.Q. Dual Plasmon Resonances and Tunable Electric Field in Structure-Adjustable Au Nanoflowers for Improved SERS and Photocatalysis. Nanomaterials 2021, 11, 2176. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.Z.; Tanvir, M.R.; Talukder, M.A. A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection. J. Appl. Phys. 2016, 119, 204701. [Google Scholar] [CrossRef]
- Rai, A.; Bhaskar, S.; Ramamurthy, S.S. Plasmon-Coupled Directional Emission from Soluplus-Mediated AgAu Nanoparticles for Attomolar Sensing Using a Smartphone. ACS Appl. Nano Mater. 2021, 4, 5940–5953. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Si, H.; Liu, C.; Liu, W.; Shafi, M.; Jiang, S.; Yue, W. LSP-SPP Coupling Structure Based on Three-Dimensional Patterned Sapphire Substrate for Surface Enhanced Raman Scattering Sensing. Nanomaterials 2023, 13, 1518. https://doi.org/10.3390/nano13091518
Xie S, Si H, Liu C, Liu W, Shafi M, Jiang S, Yue W. LSP-SPP Coupling Structure Based on Three-Dimensional Patterned Sapphire Substrate for Surface Enhanced Raman Scattering Sensing. Nanomaterials. 2023; 13(9):1518. https://doi.org/10.3390/nano13091518
Chicago/Turabian StyleXie, Shuqi, Haipeng Si, Cong Liu, Weihao Liu, Muhammad Shafi, Shouzhen Jiang, and Weiwei Yue. 2023. "LSP-SPP Coupling Structure Based on Three-Dimensional Patterned Sapphire Substrate for Surface Enhanced Raman Scattering Sensing" Nanomaterials 13, no. 9: 1518. https://doi.org/10.3390/nano13091518
APA StyleXie, S., Si, H., Liu, C., Liu, W., Shafi, M., Jiang, S., & Yue, W. (2023). LSP-SPP Coupling Structure Based on Three-Dimensional Patterned Sapphire Substrate for Surface Enhanced Raman Scattering Sensing. Nanomaterials, 13(9), 1518. https://doi.org/10.3390/nano13091518