Structural, Electronic and Optical Properties of Some New Trilayer Van de Waals Heterostructures
Abstract
:1. Introduction
2. Calculation Methods
3. Results and Discussion
3.1. Structural Parameters
3.2. Electronic Properties
3.2.1. Band Structure
3.2.2. Band Alignment
3.3. Optical Absorption Spectra
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miao, J.; Wang, C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res. 2021, 14, 1878–1888. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Das, S.; Gulotty, R.; Sumant, A.V.; Roelofs, A. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 2014, 14, 2861–2866. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Akinwande, D.; Huyghebaert, C.; Wang, C.H.; Serna, M.I.; Goossens, S.; Li, L.J.; Koppens, F.H. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, O.A.; Carvalho, O.A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Li, D.; Chen, P.; Pi, L.; Zhou, X.; Zhai, T. Van der Waals Integration Based on Two-Dimensional Materials for High-Performance Infrared Photodetectors. Adv. Funct. Mater. 2021, 31, 2103106. [Google Scholar] [CrossRef]
- Wang, P.; Xia, H.; Li, Q.; Wang, F.; Zhang, L.; Li, T.; Hu, W. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small 2019, 15, 1904396. [Google Scholar] [CrossRef]
- Guan, X.; Yu, X.; Periyanagounder, D.; Benzigar, M.R.; Huang, J.K.; Lin, C.H.; Wu, T. Recent progress in short-to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater. 2021, 9, 2001708. [Google Scholar] [CrossRef]
- Rogalski, A.; Antoszewski, J.; Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 2009, 105, 344–348. [Google Scholar] [CrossRef]
- Rhodes, D.; Chae, S.H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 2019, 18, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Robinson, J.A. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef]
- Ebnonnasir, A.; Narayanan, B.; Kodambaka, S.; Ciobanu, C.V. Tunable MoS2 bandgap in MoS2-graphene heterostructures. Appl. Phys. Lett. 2014, 105, 031603. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Zong, X.; Hu, H.; Ouyang, G.; Wang, J.; Shi, R.; Zhang, L.; Chen, X. Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. Light Sci. Appl. 2020, 9, 114. [Google Scholar] [CrossRef]
- Chen, P.; Li, N.; Chen, X.; Ong, W.J.; Zhao, X. The rising star of 2D black phosphorus beyond graphene: Synthesis, properties and electronic applications. 2d Mater. 2017, 5, 014002. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett. 2015, 6, 4280–4291. [Google Scholar] [CrossRef]
- Zhao, X.; Bo, M.; Huang, Z.; Zhou, J.; Peng, C.; Li, L. Heterojunction bond relaxation and electronic reconfiguration of WS2-and MoS2-based 2D materials using BOLS and DFT. Appl. Surf. Sci. 2018, 462, 508–516. [Google Scholar] [CrossRef]
- Hu, W.; Wang, T.; Zhang, R.; Yang, J. Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers. J. Mater. Chem. C 2016, 4, 1776–1781. [Google Scholar] [CrossRef]
- Le, N.B.; Huan, T.D.; Woods, L.M. Interlayer interactions in van der Waals heterostructures: Electron and phonon properties. ACS Appl. Mater. Interfaces 2016, 8, 6286–6292. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhang, G.; Zhang, Y.W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C 2015, 119, 13929–13936. [Google Scholar] [CrossRef]
- Su, J.; Xiao, B.; Jia, Z. A first principle study of black phosphorene/N-doped graphene heterostructure: Electronic, mechanical and interface properties. Appl. Surf. Sci. 2020, 528, 146962. [Google Scholar] [CrossRef]
- Behera, S.K.; Deb, P. Controlling the bandgap in graphene/h-BN heterostructures to realize electron mobility for high performing FETs. RSC Adv. 2017, 7, 31393–31400. [Google Scholar] [CrossRef]
- Komsa, H.P.; Krasheninnikov, A.V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 2013, 88, 085318. [Google Scholar] [CrossRef]
- Lu, N.; Guo, H.; Li, L.; Dai, J.; Wang, L.; Mei, W.N.; Zeng, X.C. MoS2/MX2 heterobilayers: Bandgap engineering via tensile strain or external electrical field. Nanoscale 2014, 6, 2879–2886. [Google Scholar] [CrossRef]
- Ren, K.; Sun, M.; Luo, Y.; Wang, S.; Yu, J.; Tang, W. First-principle study of electronic and optical properties of two-dimensional materials-based heterostructures based on transition metal dichalcogenides and boron phosphide. Appl. Surf. Sci. 2019, 476, 70–75. [Google Scholar] [CrossRef]
- Wang, S.; Tian, H.; Ren, C.; Yu, J.; Sun, M. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep. 2018, 8, 12009. [Google Scholar] [CrossRef]
- Huang, L.; Li, J. Tunable electronic structure of black phosphorus/blue phosphorus van der Waals pn heterostructure. Appl. Phys. Lett. 2016, 108, 083101. [Google Scholar] [CrossRef]
- Sun, M.; Chou, J.-P.; Yu, J.; Tang, W. Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures. Phys. Chem. Chem. Phys. 2017, 19, 17324–17330. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Zhao, Y.; Ouyang, G. Strain-modulated band engineering in two-dimensional black phosphorus/MoS2 van der Waals heterojunction. ACS Omega 2018, 3, 14641–14649. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Huo, N.; Li, Y.; Chen, H.; Yang, J.; Wei, Z.; Li, S.S. Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals pn heterostructure. J. Phys. Chem. Lett. 2015, 6, 2483–2488. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Qi, W.; Li, Y.; Wang, T. Electronic properties of van der Waals heterostructure of black phosphorus and MoS2. J. Phys. Chem. C 2018, 122, 7027–7032. [Google Scholar] [CrossRef]
- You, B.; Wang, X.; Zheng, Z.; Mi, W. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: A first-principles study. Phys. Chem. Chem. Phys. 2016, 18, 7381–7388. [Google Scholar] [CrossRef]
- Yang, F.; Han, J.; Zhang, L.; Tang, X.; Zhuo, Z.; Tao, Y.; Dai, Y. Adjustable electronic and optical properties of BlueP/MoS2 van der Waals heterostructure by external strain: A First-principles study. Nanotechnology 2020, 31, 375706. [Google Scholar] [CrossRef]
- Ye, L.; Li, H.; Chen, Z.; Xu, J. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699. [Google Scholar] [CrossRef]
- Liu, Y.; Shivananju, B.N.; Wang, Y.; Zhang, Y.; Yu, W.; Xiao, S.; Bao, Q. Highly efficient and air-stable infrared photodetector based on 2D layered graphene–black phosphorus heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 36137–36145. [Google Scholar] [CrossRef]
- Li, R. Electronic properties of hybrid graphene/nitrogene/graphene hetero-trilayers. Phys. E Low-Dimens. Syst. Nanostructures 2020, 123, 114166. [Google Scholar] [CrossRef]
- Liu, B.; Chen, Y.; You, C.; Liu, Y.; Kong, X.; Li, J.; Zhang, Y. High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions. J. Alloys Compd. 2019, 779, 140–146. [Google Scholar] [CrossRef]
- Datta, K.; Khosru, Q.D. Electronic properties of MoS2/MX2/MoS2 trilayer heterostructures: A first principle study. ECS J. Solid State Sci. Technol. 2016, 5, Q3001–Q3007. [Google Scholar] [CrossRef]
- Datta, K.; Shadman, A.; Rahman, E.; Khosru, Q.D.M. Trilayer TMDC Heterostructures for MOSFETs and Nanobiosensors. J. Electron. Mater. 2017, 46, 1248–1260. [Google Scholar] [CrossRef]
- Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Nguyen, C.V. Van der Waals heterostructures of MoS2 and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC3, C3N, C3N4 and C4N3) nanosheets: A first-principles study. J. Phys. D: Appl. Phys. 2020, 53, 355106. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Meng, D.; Li, S.; Chen, X.; Hu, T. Tunable electronic properties of MoS2/SiC heterostructures: A First-Principles study. J. Electron. Mater. 2022, 51, 3714–3726. [Google Scholar] [CrossRef]
- Han, J.; Yang, F.; Xu, L.; Zhuo, Z.; Cao, X.; Tao, Y.; Liu, W. Modulated electronic and optical properties of bilayer/trilayer Blue Phosphorene/MoX2 (X= S, Se) van der Waals heterostructures. Surf. Interfaces 2021, 25, 101228. [Google Scholar] [CrossRef]
- Kim, D.; Hashmi, A.; Hwang, C.; Hong, J. Thickness dependent band gap and effective mass of BN/graphene/BN and graphene/BN/graphene heterostructures. Surf. Sci. 2013, 610, 27–32. [Google Scholar] [CrossRef]
- Farooq, M.U.; Hashmi, A.; Hong, J. Thickness dependent optical properties of multilayer BN/graphene/BN. Surf. Sci. 2015, 634, 25–30. [Google Scholar] [CrossRef]
- Xu, L.; Huang, W.Q.; Hu, W.; Yang, K.; Zhou, B.X.; Pan, A.; Huang, G.F. Two-dimensional MoS2-graphene-based multilayer van der Waals heterostructures: Enhanced charge transfer and optical absorption, and electric-field tunable Dirac point and band gap. Chem. Mater. 2017, 29, 5504–5512. [Google Scholar] [CrossRef]
- Xia, C.; Du, J.; Fang, L.; Li, X.; Zhao, X.; Song, X.; Wang, T.; Li, J. PtSe2/graphene hetero-multilayer: Gate-tunable Schottky barrier height and contact type. Nanotechnology 2018, 29, 465707. [Google Scholar] [CrossRef]
- Long, M.; Liu, E.; Wang, P.; Gao, A.; Xia, H.; Luo, W.; Miao, F. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254–2259. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Chen, Q.; Wang, P.; Gan, Y.; Qi, T.; Wang, P.; Gong, Y. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/Graphene/SnS2 p–g–n junctions. Adv. Mater. 2019, 31, 1805656. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Kürti, J.; Rajczy, P.; Kertesz, M.; Hafner, J.; Kresse, G. Performance of the Vienna ab initio simulation package (VASP) in chemical applications. J. Mol. Struct. THEOCHEM 2003, 624, 37–45. [Google Scholar] [CrossRef]
- Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef] [PubMed]
- Bucko, T.; Hafner, J.; Lebegue, S.; Angyan, J.G. Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 2010, 114, 11814–11824. [Google Scholar] [CrossRef]
- Klimeš, J.; Bowler, D.R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201. [Google Scholar] [CrossRef]
- Dong, H.M.; Huang, L.S.; Liu, J.L.; Huang, F.; Zhao, C.X. Layer-dependent optoelectronic properties of black phosphorus. Int. J. Mod. Phys. C 2020, 31, 2050177. [Google Scholar] [CrossRef]
- Sun, M.; Chou, J.P.; Gao, J.; Cheng, Y.; Hu, A.; Tang, W.; Zhang, G. Exceptional optical absorption of buckled arsenene covering a broad spectral range by molecular doping. ACS Omega 2018, 3, 8514–8520. [Google Scholar] [CrossRef]
- Yu, L.; Lee, Y.H.; Ling, X.; Santos, E.J.; Shin, Y.C.; Lin, Y.; Palacios, T. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 2014, 14, 3055–3063. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zhao, S.; Han, C.; Wang, Z.; Zhong, S.; Sun, S.; Guo, R.; Zhou, X.; Gu, C.D.; Yuan, K.D.; et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett. 2016, 16, 4903–4908. [Google Scholar] [CrossRef]
- Qiao, J.; Kong, X.; Hu, Z.X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Kim, M.H.; Elle, J.A.; Sushkov, A.B.; Jenkins, G.S.; Milchberg, H.M.; Fuhrer, M.S.; Drew, H.D. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 2012, 7, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.D.; Chen, X.; Li, X.; Coleman, J.J. Photocurrent density enhancement of a III-V inverse quantum dot intermediate band gap photovoltaic device. In Proceedings of the 2015 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 10–15 May 2015. [Google Scholar]
- Joseph, I.; Wan, K.; Hussain, S.; Guo, L.; Xie, L.; Shi, X. Interlayer angle-dependent electronic structure and optoelectronic properties of BP-MoS2 heterostructure: A first principle study. Comput. Mater. Sci. 2021, 186, 110056. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, B.; Zhou, Y.; Jiang, R.; Wang, X.; Huang, S.; Huang, X.; Zhang, W.; Dai, Q.; Zhou, L.; Lu, P.; et al. Structural, Electronic and Optical Properties of Some New Trilayer Van de Waals Heterostructures. Nanomaterials 2023, 13, 1574. https://doi.org/10.3390/nano13091574
Cheng B, Zhou Y, Jiang R, Wang X, Huang S, Huang X, Zhang W, Dai Q, Zhou L, Lu P, et al. Structural, Electronic and Optical Properties of Some New Trilayer Van de Waals Heterostructures. Nanomaterials. 2023; 13(9):1574. https://doi.org/10.3390/nano13091574
Chicago/Turabian StyleCheng, Beitong, Yong Zhou, Ruomei Jiang, Xule Wang, Shuai Huang, Xingyong Huang, Wei Zhang, Qian Dai, Liujiang Zhou, Pengfei Lu, and et al. 2023. "Structural, Electronic and Optical Properties of Some New Trilayer Van de Waals Heterostructures" Nanomaterials 13, no. 9: 1574. https://doi.org/10.3390/nano13091574
APA StyleCheng, B., Zhou, Y., Jiang, R., Wang, X., Huang, S., Huang, X., Zhang, W., Dai, Q., Zhou, L., Lu, P., & Song, H. -Z. (2023). Structural, Electronic and Optical Properties of Some New Trilayer Van de Waals Heterostructures. Nanomaterials, 13(9), 1574. https://doi.org/10.3390/nano13091574