Growth of Quasi-Two-Dimensional CrTe Nanoflakes and CrTe/Transition Metal Dichalcogenide Heterostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Single-Crystal CrTe Nanoflakes
2.2. Preparation of CrTe/MoS2 Heterostructure
2.3. Preparation of the CrTe-WSe2 Heterostructure
2.4. Characterization Methods
2.5. Device Fabrication
3. Results and Discussions
3.1. Characterization of CrTe Single Crystal
3.2. Characterization of CrTe-WSe2 Heterostructure
3.3. Characterization of the CrTe-MoS2 Heterostructure
3.4. Property Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, P.; Xia, Y.; Gao, L.; Liao, L.; Cui, B.; Backes, D.; van der Laan, G.; Hesjedal, T.; Ji, Y.; et al. Wafer-Scale Epitaxial Growth of the Thickness-Controllable Van Der Waals Ferromagnet CrTe2 for Reliable Magnetic Memory Applications. Adv. Funct. Mater. 2023, 33, 2304454. [Google Scholar] [CrossRef]
- Huan, Y.; Luo, T.; Han, X.; Ge, J.; Cui, F.; Zhu, L.; Hu, J.; Zheng, F.; Zhao, X.; Wang, L.; et al. Composition-Controllable Syntheses and Property Modulations from 2D Ferromagnetic Fe5Se8 to Metallic Fe3Se4 Nanosheets. Adv. Mater. 2023, 35, 2207276. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Luo, X.; Chan, H.L.; Xiao, C.; Dai, Y.; Xie, M.; Hao, J. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 2019, 10, 1775. [Google Scholar] [CrossRef]
- Yasuda, K.; Wang, X.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 2021, 372, 1458–1462. [Google Scholar] [CrossRef]
- Song, Q.; Occhialini, C.A.; Ergeçen, E.; Ilyas, B.; Amoroso, D.; Barone, P.; Kapeghian, J.; Watanabe, K.; Taniguchi, T.; Botana, A.S.; et al. Evidence for a single-layer van der Waals multiferroic. Nature 2022, 602, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.-C.; Su, C.; Lin, Y.; Chou, A.-S.; Cheng, C.-C.; Park, J.-H.; Chiu, M.-H.; Lu, A.-Y.; Tang, H.-L.; Tavakoli, M.M.; et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 211–217. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, L.; Liu, Y. Role of flexural phonons in carrier mobility of two-dimensional semiconductors: Free standing vs on substrate. J. Phys. Condens. Matter. 2021, 33, 234003. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, C.; Liu, Y. Why Two-Dimensional Semiconductors Generally Have Low Electron Mobility. Phys. Rev. Lett. 2020, 125, 177701. [Google Scholar] [CrossRef]
- Das, S.; Sebastian, A.; Pop, E.; McClellan, C.J.; Franklin, A.D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A.V.; Appenzeller, J.; et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 1994, 64, 1687–1689. [Google Scholar] [CrossRef]
- Yang, C.S.; Shang, D.S.; Liu, N.; Fuller, E.J.; Agrawal, S.; Talin, A.A.; Li, Y.Q.; Shen, B.G.; Sun, Y. All-Solid-State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing. Adv. Funct. Mater. 2018, 28, 1804170. [Google Scholar] [CrossRef]
- Poh, S.M.; Tan, S.J.; Wang, H.; Song, P.; Abidi, I.H.; Zhao, X.; Dan, J.; Chen, J.; Luo, Z.; Pennycook, S.J.; et al. Molecular-Beam Epitaxy of Two-Dimensional In2Se3 and Its Giant Electroresistance Switching in Ferroresistive Memory Junction. Nano Lett. 2018, 18, 6340–6346. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wan, Z.; Liu, Y.; Xu, J.; Yang, X.; Shen, D.; Zhang, Z.; Guo, C.; Qian, Q.; Li, J.; et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 2021, 591, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, W.; Yang, L.; Wang, J.; Li, J.; Li, L.; Gao, Y.; Zhang, L.; Du, J.; Shu, H.; et al. Strong intrinsic room-temperature ferromagnetism in freestanding non-van der Waals ultrathin 2D crystals. Nat. Commun. 2021, 12, 5688. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Kang, L.; Su, J.; Zhang, L.; Dai, H.; Cheng, H.; Han, X.; Zhai, T.; Liu, Z.; Han, J. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale 2020, 12, 16427–16432. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Wan, W.; Ge, Y.; Liu, Y. Diverse magnetism in stable and metastable structures of CrTe. Front. Phys. 2021, 16, 63506. [Google Scholar] [CrossRef]
- Sun, S.; Liang, J.; Liu, R.; Shen, W.; Wu, H.; Tian, M.; Cao, L.; Yang, Y.; Huang, Z.; Lin, W.; et al. Anisotropic magnetoresistance in room temperature ferromagnetic single crystal CrTe flake. J. Alloys Compd. 2022, 890, 161818. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, J.; Fang, D.; Zhang, Y.; Wang, D. Unusual magnetic interaction in CrTe: Insights from machine-learning and empirical models. J. Phys. Condens. Matter 2023, 36, 135804. [Google Scholar] [CrossRef]
- Masrour, R.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Mounkachi, O.; El Moussaoui, H. Density of States and magnetic features of CrTe compounds investigated by first principle, mean field and series expansions calculations. J. Magn. Magn. Mater. 2015, 379, 213–216. [Google Scholar] [CrossRef]
- Alegria, L.D.; Ji, H.; Yao, N.; Clarke, J.J.; Cava, R.J.; Petta, J.R. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures. Appl. Phys. Lett. 2014, 105, 053512. [Google Scholar] [CrossRef]
- Bian, M.; Zhu, L.; Wang, X.; Choi, J.; Chopdekar, R.; Wei, S.; Wu, L.; Huai, C.; Marga, A.; Yang, Q.; et al. Dative Epitaxy of Commensurate Monocrystalline Covalent van der Waals Moiré Supercrystal. Adv. Mater. 2022, 34, 2200117. [Google Scholar] [CrossRef] [PubMed]
- Bréhin, J.; Chen, Y.; D’Antuono, M.; Varotto, S.; Stornaiuolo, D.; Piamonteze, C.; Varignon, J.; Salluzzo, M.; Bibes, M. Coexistence and coupling of ferroelectricity and magnetism in an oxide two-dimensional electron gas. Nat. Phys. 2023, 19, 823–829. [Google Scholar] [CrossRef]
- Wang, T.; Sun, F.; Hong, W.; Jian, C.; Ju, Q.; He, X.; Cai, Q.; Liu, W. Growth modulation of nonlayered 2D-MnTe and MnTe/WS2 heterojunction for high-performance photodetector. J. Mater. Chem. C 2023, 11, 1464–1469. [Google Scholar] [CrossRef]
- Sun, X.; Li, W.; Wang, X.; Sui, Q.; Zhang, T.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S.; et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363. [Google Scholar] [CrossRef]
- Tang, B.; Wang, X.; Han, M.; Xu, X.; Zhang, Z.; Zhu, C.; Cao, X.; Yang, Y.; Fu, Q.; Yang, J.; et al. Phase engineering of Cr5Te8 with colossal anomalous Hall effect. Nat. Electron. 2022, 5, 224–232. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, Z.; Zhang, Y.; Xia, C.; Zhai, B.; Zhang, X.; Zhai, G.; Shen, C.; He, P.; Cheng, R.; et al. Tunable Room-Temperature Ferromagnetism in Two-Dimensional Cr2Te3. Nano Lett. 2020, 20, 3130–3139. [Google Scholar] [CrossRef]
- Li, B.; Deng, X.; Shu, W.; Cheng, X.; Qian, Q.; Wan, Z.; Zhao, B.; Shen, X.; Wu, R.; Shi, S.; et al. Air-stable ultrathin Cr3Te4 nanosheets with thickness-dependent magnetic biskyrmions. Mater. Today 2022, 57, 66–74. [Google Scholar] [CrossRef]
- McGuire, M.A.; Clark, G.; Santosh, K.; Chance, W.M.; Jellison, G.E., Jr.; Cooper, V.R.; Xu, X.; Sales, B.C. Magnetic Behavior and Spin-Lattice Coupling in Cleavable, van der Waals Layered CrCl3 Crystals. Phys. Rev. Mater. 2017, 1, 014001. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.-H.; Yang, R.; Bao, L.-H.; Meng, L.; Luo, H.-L.; Cai, Y.-Q.; Liu, G.-D.; Zhao, W.-J.; Zhou, Z.; et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-U.; Lee, S.; Ryoo, J.H.; Kang, S.; Kim, T.Y.; Kim, P.; Park, C.-H.; Park, J.-G.; Cheong, H. Ising-Type Magnetic Ordering in Atomically Thin FePS3. Nano Lett. 2016, 16, 7433–7438. [Google Scholar] [CrossRef] [PubMed]
- Arnold, F.; Stan, R.-M.; Mahatha, S.K.; Lund, H.E.; Curcio, D.; Dendzik, M.; Bana, H.; Travaglia, E.; Bignardi, L.; Lacovig, P.; et al. Novel single-layer vanadium sulphide phases. 2D Mater. 2018, 5, 045009. [Google Scholar] [CrossRef]
- Och, M.; Martin, M.-B.; Dlubak, B.; Seneor, P.; Mattevi, C. Synthesis of emerging 2D layered magnetic materials. Nanoscale 2021, 13, 2157–2180. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhu, X.; Liu, H.; Song, S.; Chen, Y.; Liu, C.; Zhou, W.; Tang, C.; Shao, G.; Jin, Y.; et al. Direct Growth of Magnetic Non-van der Waals Cr2X3(X = S, Se, and Te) on SiO2/Si Substrates through the Promotion of KOH. Chem. Mater. 2022, 34, 2342–2351. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, J.; Liu, L.; Liu, N.; Huang, J.; Zhang, B.; Li, W.; Zeng, Y.; Zhang, T.; Ji, W.; et al. Two-Dimensional Room-Temperature Magnetic Nonstoichiometric Fe7Se8 Nanocrystals: Controllable Synthesis and Magnetic Behavior. Nano Lett. 2022, 22, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Xu, H.; Tan, Z.; Wang, L. Synthesis of uniform two-dimensional non-layered α-MnSe by molecular sieves modified chemical vapor deposition. Res. Phys. 2023, 47, 106321. [Google Scholar] [CrossRef]
- Song, L.; Zhao, Y.; Xu, B.; Du, R.; Li, H.; Feng, W.; Yang, J.; Li, X.; Liu, Z.; Wen, X.; et al. Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide. Nat. Commun. 2024, 15, 721. [Google Scholar] [CrossRef]
- Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z.; Sun, G.; et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825. [Google Scholar] [CrossRef]
- Vu, V.T.; Nguyen, M.C.; Kim, W.K.; Do, V.D.; Dat, V.K.; Yu, W.J. Synthesis of NbSe2/Bilayer Nb-Doped WSe2 Heterostructure from Exfoliated WSe2 Flakes. Small Struct. 2024, 5, 2300401. [Google Scholar] [CrossRef]
- Xia, J.; Yan, J.; Wang, Z.; He, Y.; Gong, Y.; Chen, W.; Sum, T.C.; Liu, Z.; Ajayan, P.M.; Shen, Z. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat. Phys. 2021, 17, 92–98. [Google Scholar] [CrossRef]
- Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B.I.; et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Lei, S.; Ye, G.; Li, B.; He, Y.; Keyshar, K.; Zhang, X.; Wang, Q.; Lou, J.; Liu, Z.; et al. Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. Nano Lett. 2015, 15, 6135–6141. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Qin, Y.; Chen, B.; Özçelik, V.O.; White, C.E.; Shen, Y.; Yang, S.; Tongay, S. Novel Surface Molecular Functionalization Route To Enhance Environmental Stability of Tellurium-Containing 2D Layers. ACS Appl. Mater. Interfaces 2017, 9, 44625–44631. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Ye, C.; Zhao, X.; Zhou, X.; Hu, J.; Li, Q.; Liu, D.; Das, C.M.; Yang, J.; Hu, D.; et al. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat. Commun. 2020, 11, 3729. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Eshete, Y.A.; Lee, S.; Won, D.; Im, S.; Lee, S.; Cho, S.; Yang, H. Bandgap modulation in the two-dimensional core-shell-structured monolayers of WS2. iScience 2022, 25, 103563. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Singh, A.K.; Zhang, C.; Hu, X.; Shi, J.; An, L.; Wang, N.; Duan, R.; Liu, Z.; Parkin, S.S.P.; et al. Room-temperature tunable tunneling magnetoresistance in Fe3GaTe2/WSe2/Fe3GaTe2 van der Waals heterostructures. InfoMat 2023, e12504. [Google Scholar] [CrossRef]
- Li, X.; Lü, J.-T.; Zhang, J.; You, L.; Su, Y.; Tsymbal, E.Y. Spin-Dependent Transport in van der Waals Magnetic Tunnel Junctions with Fe3GeTe2 Electrodes. Nano Lett. 2019, 19, 5133–5139. [Google Scholar] [CrossRef]
- Zhu, W.; Zhu, Y.; Zhou, T.; Zhang, X.; Lin, H.; Cui, Q.; Yan, F.; Wang, Z.; Deng, Y.; Yang, H.; et al. Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Nat. Commun. 2023, 14, 5371. [Google Scholar] [CrossRef]
- Lin, H.; Yan, F.; Hu, C.; Lv, Q.; Zhu, W.; Wang, Z.; Wei, Z.; Chang, K.; Wang, K. Spin-Valve Effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals Heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 43921–43926. [Google Scholar] [CrossRef]
- Zhu, W.; Xie, S.; Lin, H.; Zhang, G.; Wu, H.; Hu, T.; Wang, Z.; Zhang, X.; Xu, J.; Wang, Y.; et al. Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions. Chin. Phys. Lett. 2022, 39, 128501. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, C.; Zhou, P. Transistor engineering based on 2D materials in the post-silicon era. Nat. Rev. Electr. Eng. 2024, 1, 335–348. [Google Scholar] [CrossRef]
- Patoary, N.H.; Xie, J.; Zhou, G.; Al Mamun, F.; Sayyad, M.; Tongay, S.; Esqueda, I.S. Improvements in 2D p-type WSe2 transistors towards ultimate CMOS scaling. Sci. Rep. 2023, 13, 3304. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Long, H.; Zhong, J.; Ding, F.; Li, W.; Zhang, Z.; Song, R.; Huang, W.; Liang, J.; Liu, J.; et al. Two-dimensional metallic alloy contacts with composition-tunable work functions. Nat. Electron. 2023, 6, 842–851. [Google Scholar] [CrossRef]
- Nishimura, T.; Kita, K.; Toriumi, A. Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface. Appl. Phys. Lett. 2007, 91, 123123. [Google Scholar] [CrossRef]
- Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C.W.; McDonnell, S.; Colombo, L.; Vogel, E.M.; Ruoff, R.S.; Wallace, R.M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108. [Google Scholar] [CrossRef]
- Jang, J.; Ra, H.-S.; Ahn, J.; Kim, T.W.; Song, S.H.; Park, S.; Taniguch, T.; Watanabe, K.; Lee, K.; Hwang, D.K. Fermi-Level Pinning-Free WSe2 Transistors via 2D Van der Waals Metal Contacts and Their Circuits. Adv. Mater. 2022, 34, 2109899. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, D.; Liu, J.; Wei, B. Growth of Quasi-Two-Dimensional CrTe Nanoflakes and CrTe/Transition Metal Dichalcogenide Heterostructures. Nanomaterials 2024, 14, 868. https://doi.org/10.3390/nano14100868
Cheng D, Liu J, Wei B. Growth of Quasi-Two-Dimensional CrTe Nanoflakes and CrTe/Transition Metal Dichalcogenide Heterostructures. Nanomaterials. 2024; 14(10):868. https://doi.org/10.3390/nano14100868
Chicago/Turabian StyleCheng, Dawei, Jiayi Liu, and Bin Wei. 2024. "Growth of Quasi-Two-Dimensional CrTe Nanoflakes and CrTe/Transition Metal Dichalcogenide Heterostructures" Nanomaterials 14, no. 10: 868. https://doi.org/10.3390/nano14100868
APA StyleCheng, D., Liu, J., & Wei, B. (2024). Growth of Quasi-Two-Dimensional CrTe Nanoflakes and CrTe/Transition Metal Dichalcogenide Heterostructures. Nanomaterials, 14(10), 868. https://doi.org/10.3390/nano14100868