UV/Ozone-Treated and Sol–Gel-Processed Y2O3 Insulators Prepared Using Gelation-Delaying Precursors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Engel, J.; Chen, J.; Fan, Z.; Liu, G. Polymer micromachined multimodal tactile sensors. Sens. Actuator Phys. 2005, 117, 50–61. [Google Scholar] [CrossRef]
- Hwang, G.-T.; Byun, M.; Jeong, C.K.; Lee, K.J. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthc. Mater. 2015, 4, 646–658. [Google Scholar] [CrossRef] [PubMed]
- Kaltenbrunner, M.; Adam, G.; Głowacki, E.D.; Drack, M.; Schwödiauer, R.; Leonat, L.; Apaydin, D.H.; Groiss, H.; Scharber, M.C.; White, M.S.; et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 2015, 14, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499. [Google Scholar] [CrossRef]
- Ersman, P.A.; Lassnig, R.; Strandberg, J.; Tu, D.; Keshmiri, V.; Forchheimer, R.; Fabiano, S.; Gustafsson, G.; Berggren, M. All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun. 2019, 10, 5053. [Google Scholar] [CrossRef] [PubMed]
- Shahrjerdi, D.; Bedell, S.W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano Lett. 2013, 13, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Li, R.; Zhang, Y.; Xu, G.; Cheng, H. Fabrication of highly transparent and conductive indium-tin oxide thin films with a high figure of merit via solution processing. Langmuir 2013, 29, 13836. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kim, K.; Kim, H.I.; Lee, S.H.; Bae, J.H.; Kang, I.M.; Kim, K.; Lee, W.Y.; Jang, J. Improved Negative Bias Stability of Sol–Gel-Processed SnO2 Thin-Film Transistors with Vertically Controlled Carrier Concentrations. ACS Appl. Electron. Mater. 2023, 5, 2670–2677. [Google Scholar] [CrossRef]
- Lee, W.Y.; Kim, D.W.; Kim, H.J.; Kim, K.; Lee, S.H.; Bae, J.H.; Kang, I.M.; Kim, K.; Jang, J. Environmentally and Electrically Stable Sol–Gel-Deposited SnO2 Thin-Film Transistors with Controlled Passivation Layer Diffusion Penetration Depth That Minimizes Mobility Degradation. ACS Appl. Mater. Interfaces 2022, 14, 10558–10565. [Google Scholar] [CrossRef]
- Si, M.; Lin, Z.; Sun, X.; Wang, H.; Ye, P.D. Scaled indium oxide transistors fabricated using atomic layer deposition. Nat. Electron. 2022, 5, 164–170. [Google Scholar]
- Zhao, M.; Yan, J.; Wang, Y.; Chen, O.; Cao, R.; Xu, H.; Wuu, D.S.; Wu, W.Y.; Lai, F.M.; Lien, S.Y.; et al. The Enhanced Performance of Oxide Thin-Film Transistors Fabricated by a Two-Step Deposition Pressure Process. Nanomaterials 2024, 14, 690. [Google Scholar] [CrossRef]
- Park, S.; Kim, C.H.; Lee, W.J.; Sung, S.; Yoon, M.H. Sol-gel metal oxide dielectrics for all-solution-processed electronics. Mater. Sci. Eng. R Rep. 2017, 114, 1–22. [Google Scholar] [CrossRef]
- Kimura, M.; Sumida, R.; Kurasaki, A.; Imai, T.; Takishita, Y.; Nakashima, Y. Amorphous Metal Oxide Semiconductor Thin Film, analog memristor, and autonomous local learning for neuromorphic systems. Sci. Rep. 2021, 11, 580. [Google Scholar] [CrossRef]
- Clarke, H.; Brown, T.; Hu, J.; Ganguli, R.; Reed, A.; Voevodin, A.; Shamberger, P.J. Microstructure dependent filament forming kinetics in HfO2 programmable metallization cells. Nanotechnology 2016, 27, 425709. [Google Scholar] [CrossRef]
- Lee, E.; Kim, T.H.; Lee, S.W.; Kim, J.H.; Kim, J.; Ahm, J.H.; Cho, B. Improved Electrical Performance of a Sol–gel IGZO Transistor with High-k Al2O3 Gate Dielectric Achieved by Post Annealing. Nano Converg. 2019, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.J.; Lee, J.S. Ferroelectric Transistors for Memory and Neuromorphic Device Applications. Adv. Mater. 2023, 35, 2206864. [Google Scholar] [CrossRef]
- Jang, J.; Kang, H.; Chakravarthula, H.C.N.; Subramanian, V. Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch. Adv. Electron. Mater. 2015, 1, 1500086. [Google Scholar] [CrossRef]
- Lee, W.J.; Park, W.T.; Park, S.; Sung, S.; Noh, Y.Y.; Yoon, M.H. Large-Scale Precise Printing of Ultrathin Sol-Gel Oxide Dielectrics for Directly Patterned Solution-Processed Metal Oxide Transistor Arrays. Adv. Mater. 2015, 27, 5043–5048. [Google Scholar] [CrossRef]
- Birnie, D.P. Rational solvent selection strategies to combat striation formation during spin coating of thin films. J. Mater. Res. 2001, 16, 1145–1154. [Google Scholar] [CrossRef]
- Birnie, D.P. A Model for Drying Control Cosolvent Selection for Spin-Coating Uniformity: The Thin Film Limit. Langmuir 2013, 29, 9072–9078. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, H.; Matsui, T.; Kozuka, H. Spontaneous Pattern Formation Induced by Bénard–Marangoni Convection for Sol–Gel-Derived Titania Dip-Coating Films: Effect of Co-solvents with a High Surface Tension and Low Volatility. Langmuir 2015, 31, 12497–12504. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.H.; Kim, M.; Jang, J.; Lee, K.H.; Jho, J.Y.; Park, J.H. Tip-enhanced electric field-driven efficient charge injection and transport in organic material-based resistive memories. Appl. Mater. Today 2020, 20, 100746. [Google Scholar] [CrossRef]
- Scheurell, K.; Noack, J.; König, R.; Hegmann, J.; Jahn, R.; Hofmann, T.; Löbmann, P.; Lintner, B.; Garcia-Juan, P.; Eicher, J.; et al. Optimisation of a sol–gel synthesis route for the preparation of MgF2 particles for a large scale coating process. Dalton Trans. 2015, 44, 19501–19508. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Qin, W.; Zhang, S.; Liu, D.; Yu, Z.; Mao, J.; Wu, L.; Yang, L.; Yin, S. Effect of UV-ozone process on the ZnO interlayer in the inverted organic solar cells. RSC Adv. 2017, 7, 6040–6045. [Google Scholar] [CrossRef]
- Sun, L.; Uda, K.; Yoshida, T.; Suzuri, Y. Photochemical Conversion of Ethanolamine-Zn2+ Complex Gel under Vacuum Ultraviolet Irradiation Associated with Color-Tunable Photoluminescence. J. Phys. Chem. C 2021, 125, 5417–5424. [Google Scholar] [CrossRef]
- Xu, J.; Teng, Y.; Teng, F. Effect of Surface Defect States on Valence Band and Charge Separation and Transfer Efficiency. Sci. Rep. 2016, 6, 32457. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhuge, F.; Li, M.; Yin, K.; Liu, Y.; Zuo, Z.; Chen, B.; Li, R.W. Microstructure dependence of leakage and resistive switching behaviours in Ce-doped BiFeO3 thin films. J. Phys. D Appl. Phys. 2011, 44, 415104. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Wang, G.C.; Lu, T.M. Surface-roughness effect on capacitance and leakage current of an insulating film. Phys. Rev. B. 1999, 60, 9157. [Google Scholar] [CrossRef]
- Park, S.; Kim, K.-H.; Jo, J.-W.; Sung, S.; Kim, K.-T.; Lee, W.-J.; Kim, J.; Kim, H.J.; Yi, G.-R.; Kim, Y.-H. In-Depth Studies on Rapid Photochemical Activation of Various Sol-Gel Metal Oxide Films for Flexible Transparent Electronics. Adv. Funct. Mater. 2015, 25, 2807–2815. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Mallick, K. Temperature and frequency dependent dielectric capacitance and polarization performances of low dimensional perovskite-based manganese stannate. J. Mater. Sci. Mater. Electron. 2023, 34, 1804. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jin, M.J.; Hou, B.; Kim, M.P.; Um, D.S.; Kim, C.I. Reducing the oxygen vacancy concentration in SrTiO3-δ thin films via an optimized O2 plasma treatment for enhancing device properties. Appl. Surf. Sci. 2023, 639, 158271. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Cho, Y.; Heo, S.; Bae, J.-H.; Kang, I.-M.; Kim, K.; Lee, W.-Y.; Jang, J. UV/Ozone-Treated and Sol–Gel-Processed Y2O3 Insulators Prepared Using Gelation-Delaying Precursors. Nanomaterials 2024, 14, 791. https://doi.org/10.3390/nano14090791
Lee S, Cho Y, Heo S, Bae J-H, Kang I-M, Kim K, Lee W-Y, Jang J. UV/Ozone-Treated and Sol–Gel-Processed Y2O3 Insulators Prepared Using Gelation-Delaying Precursors. Nanomaterials. 2024; 14(9):791. https://doi.org/10.3390/nano14090791
Chicago/Turabian StyleLee, Sangwoo, Yoonjin Cho, Seongwon Heo, Jin-Hyuk Bae, In-Man Kang, Kwangeun Kim, Won-Yong Lee, and Jaewon Jang. 2024. "UV/Ozone-Treated and Sol–Gel-Processed Y2O3 Insulators Prepared Using Gelation-Delaying Precursors" Nanomaterials 14, no. 9: 791. https://doi.org/10.3390/nano14090791
APA StyleLee, S., Cho, Y., Heo, S., Bae, J. -H., Kang, I. -M., Kim, K., Lee, W. -Y., & Jang, J. (2024). UV/Ozone-Treated and Sol–Gel-Processed Y2O3 Insulators Prepared Using Gelation-Delaying Precursors. Nanomaterials, 14(9), 791. https://doi.org/10.3390/nano14090791