Next Article in Journal
Amorphous Fe2O3 Anchored on N-Doped Graphene with Internal Micro-Channels as an Active and Durable Anode for Sodium-Ion Batteries
Previous Article in Journal
Oxygen Vacancy-Enhanced Ni3N-CeO2/NF Nanoparticle Catalysts for Efficient and Stable Electrolytic Water Splitting
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Communication

Fabrication of WO3 Quantum Dots with Different Emitting Colors and Their Utilization in Luminescent Woods

Division of Advanced Materials Engineering, Center for Advanced Materials and Parts of Powders, Kongju National University, Cheonan-si 31080, Republic of Korea
*
Authors to whom correspondence should be addressed.
Nanomaterials 2024, 14(11), 936; https://doi.org/10.3390/nano14110936
Submission received: 19 April 2024 / Revised: 17 May 2024 / Accepted: 23 May 2024 / Published: 27 May 2024

Abstract

:
With a rising interest in smart windows and optical displays, the utilization of metal oxides (MOs) has garnered significant attention owing to their high active sites, flexibility, and tunable electronic and optical properties. Despite these advantages, achieving precise tuning of optical properties in MOs-based quantum dots and their mass production remains a challenge. In this study, we present an easily scalable approach to generate WO3 quantum dots with diverse sizes through sequential insertion/exfoliation processes in solvents with suitable surface tension. Additionally, we utilized the prepared WO3 quantum dots in the fabrication of luminescent transparent wood via an impregnation process. These quantum dots manifested three distinct emitting colors: red, green, and blue. Through characterizations of the structural and optical properties of the WO3 quantum dots, we verified that quantum dots with sizes around 30 nm, 50 nm, and 70 nm showcase a monoclinic crystal structure with oxygen-related defect sites. Notably, as the size of the WO3 quantum dots decreased, the maximum emitting peak underwent a blue shift, with peaks observed at 407 nm (blue), 493 nm (green), and 676 nm (red) under excitation by a He-Cd laser (310 nm), respectively. Transparent woods infused with various WO3 quantum dots exhibited luminescence in blue/white emitting colors. These results suggest substantial potential in diverse applications, such as building materials and optoelectronics.

1. Introduction

Two-dimensional metal oxides (2D-MOs), characterized by diverse polymorphic crystal structures, have garnered significant attention due to their potential applications, including in smart windows, displays, and capacitors [1,2,3,4]. Tungsten trioxide (WO3) and perovskite quantum dots have garnered significant interest as compelling materials due to their outstanding luminescence, straightforward synthesis processes, and convenient tunability, particularly in the fields of photocatalysis, optoelectronics, and electrochromics [5]. Their appeal lies in the ability to tune electronic and optical properties through the manipulation of the crystal structure and chemical composition at edges or surfaces [6,7,8]. The optical properties of WO3 sheets have been documented within the range of 2.6–3.5 eV [9]. A wider band gap is generally advantageous, offering increased flexibility in optical sensing and imaging systems. This is attributed to the heightened sensitivity and resolution of devices associated with a broader band gap. A wider band gap enables more effective discrimination of specific wavelengths linked to particular materials or features. Despite these advantages, achieving a significant widening of band gaps remains a persistent challenge, even with the introduction of doping, alloying, strain engineering, and surface treatments.
Manipulating the size, crystal phase, and composition of tungsten oxide quantum dots imparts exclusive optical and electronic traits at the nanoscale. These characteristics offer advantages in tailoring materials to meet the specific requirements of diverse applications. Various techniques have been reported for tungsten oxide quantum dot fabrication. One method involves chemical precipitation, encompassing the formation of tungsten nanoparticles and their stabilization in a solution [10]. Hydrothermal methods, operating under high temperature and pressure conditions with the addition of chemicals (oleic acid or hydrazine hydrate), enable control over the size of the quantum dots [11,12]. Microemulsions, stable colloidal dispersions of oil and water stabilized by surfactants, serve as reaction media for synthesizing tungsten oxide quantum dots [13]. In this process, tungsten oxide precursors are introduced into the microemulsion system, leading to the formation of quantum dots. Electrochemical methods involve the reduction of tungsten ions on an electrode surface, allowing for controlled size and properties of tungsten oxide quantum dots through aliphatic amine chemicals in electrochemical conditions [6,14]. Additionally, UV light irradiation (365 nm) expedites the synthesis of tungsten oxide quantum dots, presenting enhanced thermal/photonic stabilities for blue PL emission [15]. Intercalation-based exfoliation methods are acknowledged as efficient strategies for producing metal oxide-based quantum dots, causing minimal damage to WO3 crystals. Notably, the selection of an appropriate solvent is pivotal in intercalation-based exfoliation and the subsequent processing of layered materials. A solvent with suitable surface tension interacts effectively with the material, facilitating the penetration of solvent molecules between layers. This interaction aids in overcoming interlayer forces, leading to successful exfoliation with tailored individual nanosheets or quantum dots of different sizes and thicknesses [4,16]. In this regard, understanding and controlling the surface tension of the solvent is essential for optimizing the exfoliation of layer-structured materials. This control ensures successful dispersion, stability, and size/thickness control of the exfoliated nanomaterials, impacting their properties and applications.
Here, we present a straightforward and efficient method for synthesizing WO3 quantum dots of varying sizes through the insertion of potassium ions and subsequent exfoliation in the solvents with different surface tension properties. The structural and optical properties of the WO3 quantum dots were comprehensively examined using high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV–vis absorption spectroscopy, and photoluminescence (PL). Additionally, quantum dots with different particle sizes were prepared and subjected to detailed analysis. The observed distinctions in WO3 quantum dots were attributed to the surface energy variations among the three solvents and the potassium-intercalated WO3 compound. Also, with the growing interest in environmentally friendly, energy-saving, and highly stable solid-state lighting solutions, particularly for applications in green and sustainable interior illumination and decoration, the luminescent woods with different emitting colors were fabricated by impregnation of the WO3 QDs in the delignified wood structure. These findings suggest significant potential across diverse applications such as smart windows and building materials.

2. Materials and Methods

2.1. Fabrication of WO3 Quantum Dots of Different Sizes and Luminescent Woods

WO3 powder, naphthalene, tetrahydrofuran (THF), N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and formamide were purchased from Sigma-Aldrich, St. Louis, MO, USA. The manufacturing process of WO3 intercalation compounds (WICs) was carried out in a vacuum system. After dissolving potassium metal in a solution in which naphthalene-THF was dissolved, WO3 powder was mixed with the solution. In more detail, a mixture was prepared by dispersing potassium metal (0.39 g) and naphthalene (1.28 g) in tetrahydrofuran (10 mL). Subsequently, WO3 powder (0.5 g) was added to the solution and maintained at 60 °C for 3 h. After the removal of naphthalene using cyclohexane, the intercalation compound powder, precipitated in cyclohexane, was introduced into the selected solvents (DI, THF, DMSO, ethanol, IPA, hexane, DMF, NMP, and formamide), followed by sonication for 1 h at temperatures ranging from 10 °C to 50 °C. This process aimed to tailor the fabrication of WO3 quantum dots (QDs) with varied sizes. The resulting samples, exfoliated in different solutions, were centrifuged at 1500 rpm for 30 min, yielding well-dispersed colloidal solutions named Red WO3 QDs (in formamide), green WO3 QDs (in NMP), and blue WO3 QDs (in DMF), respectively.
To fabricate transparent woods, Balsa wood with a thickness of 2 mm and a density of 0.26 g/cm3 was obtained from Midwest Products, USA. Sodium hydroxide (NaOH, 98.0%), sodium sulfite (Na2SO3, Daejung Reagents Chemicals, Daejung, Siheung, Gyeonggi-do, Republic of Korea), and hydrogen peroxide (H2O2, 30%, Daejung Reagents Chemicals, Republic of Korea) were also procured. Prior to the delignification and bleaching processes, each wood piece was dried at 100 °C. The dried wood pieces underwent delignification using a solution comprising sodium hydroxide (2.5 mol/L) and sodium sulfite (0.4 mol/L) dissolved in DI water. The woods were immersed in the lignin removal solution and boiled with stirring for 6 h. Following delignification, the delignified woods (DWs) were transferred to a bleaching solution (hydrogen peroxide mixed with DI water at a 1:1 weight ratio) to further eliminate lignin and other chemicals. The samples were bleached with stirring for 1 h. After the bleaching process, the woods were washed thrice with ethanol to remove any residual chemicals and then dried at 80 °C. Finally, luminescent woods were created by impregnating the delignified woods in WO3 quantum dot (QD) solutions. The delignified woods were immersed for 24 h at 30 °C and then dried for 24 h in an oven at 30 °C.

2.2. Characterizations

The dimensions of all samples were evaluated using atomic force microscopy (AFM; SPA400; SII, Chiba, Japan) in noncontact mode and high-resolution transmission electron microscopy (HR-TEM, Tecnai G2 F30, Hillsboro, OR, USA). Raman spectra, spanning from 200 to 900 cm−1, were obtained with a Raman spectrometer (LabRAM HR, Horiba, Palaiseau, France) employing 325 nm laser excitation. The chemical compositions were determined through photoelectron spectroscopy (XPS; Sigma Probe; AlK, Thermo Fisher Scientific, Kyoto, Japan). Photoluminescence (PL) measurements were conducted at room temperature using a 310 nm He-Cd continuous-wave (CW) laser, a mode-locked femtosecond-pulsed Ti:sapphire laser (Coherent, Chameleon Ultra II, Santa Clara, CA, USA), and monochromatic light from a 300 W Xenon lamp, respectively. We measured the QYs by using an absolute PL quantum yields measurement system (Hamamatsu Photonics, C9920-02G, Hamamatsu, Japan) that measured total photon flux by incorporating an integration sphere. UV spectrometers (Maya2000, Ocean Optics, Orlando, FL, USA) were used as a PL detector at room temperature.

3. Results

In Figure 1, the sequential steps for synthesizing the WO3 quantum dots (QDs) of various sizes are depicted through an insertion and exfoliation process from bulk WO3 powder. Initially, WO3 intercalation compounds were synthesized by reacting WO3 powder with a mixture solution containing potassium metal (0.39 g) and naphthalene (1.28 g) in tetrahydrofuran (10 mL). Subsequently, the intercalation compounds underwent exfoliation in selected solvents with different surface tensions (DI (72 mN/m), THF (24.4 mN/m), DMSO (43.5 mN/m), ethanol (22 mN/m), IPA (23 mN/m), hexane (18 mN/m), DMF (37.1 mN/m), NMP (40.8 mN/m), and formamide (58.2 mN/m)) with sonication assistance, as shown in Figure S1. Following the intercalation process, the bulk WO3 powder, initially yellow in color, transformed into a light orange. Ultimately, three distinct WO3 quantum dots were fabricated, exhibiting blue-, green-, and red-emitting colors under the excitation of a 365 nm UV lamp.
The microstructural properties of both bulk WO3 powder and WO3 quantum dots (QDs) were assessed using scanning electron microscopy (SEM), and the outcomes are depicted in Figure 2a,b. The bulk WO3 exhibited an asymmetric surface particle morphology with a size of approximately ~1 μm and no discernible pores (Figure 2a). Following the exfoliation process to produce WO3 QDs, both the overall size and thickness were notably reduced to below 100 nm. Despite the similarity in SEM images for all the WO3 QDs, observed agglomeration during sampling is depicted in Figure 2b and Figure S2. These findings underscore that the morphological characteristics of the samples could be effectively altered through the exfoliation of WO3 intercalation compounds in the selected solvents. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses were carried out to assess the crystal structure and chemical composition of the as-prepared WO3 QDs. The Raman spectra of the bulk WO3 powder exhibited four characteristic peaks (Figure 2c). The bands at 277 and 302 cm−1 were attributed to the bending modes of O−W−O, while the bands at 718 and 815 cm−1 in the high wavenumber region were assigned to the stretching modes of W−O−W [17]. Comparatively, the Raman spectra of the WO3 QDs revealed three characteristic peaks with lower intensity and broader peaks at similar locations compared to those of the bulk WO3 powder. Notably, the peaks observed at 277 cm−1 and 302 cm−1 disappeared, and a new peak emerged at 290 cm−1. These results indicate the successful fabrication of WO3 QDs, showcasing a reduction in both size and thickness compared to the bulk WO3 powder, aligning with the SEM analysis results.
To further investigate the composition of the nanosheets, X-ray Photoelectron Spectroscopy (XPS) characterizations were conducted. Figure 2d,e present the W4f and O1s spectra of both bulk WO3 and WO3 quantum dot (QD) samples. In Figure 2d, both bulk WO3 and WO3 QDs exhibit characteristic peaks related to the W4f core level, which split into two energy levels, W4f7/2 and W4f5/2. The peak positions for these energy levels were located at 35.2 and 37.3 eV, respectively. These positions align with the literature reports, indicating W6+ states in the WO3 QDs [16,17]. Furthermore, the O1s spectrum revealed a single peak that could be deconvoluted into two peaks at 532.1 eV and 530.8 eV. These peaks could be attributed to C-O and W-O, consistent with previous reports [6,16]. The XPS analysis results reaffirmed the presence of oxygen-rich groups on the surface of the WO3 QDs.
Atomic force microscopy (AFM) was employed for a detailed analysis of the thickness of the WO3 quantum dots (QDs) of various sizes. Figure 3a–c present representative AFM images, indicating that the thickness of all the WO3 QDs was below 6 nm, indicative of the few-layer structure of WO3. The lateral sizes for blue WO3 QDs, green WO3 QDs, and red WO3 QDs were approximately 30 nm, 50 nm, and 70 nm, respectively. Additionally, TEM images of individual WO3 QDs of different sizes were observed, as depicted in Figure 3d–f. Notably, all clear lattice spacing was measured at 0.37 nm (Figure S3), corresponding to the (002) plane of monoclinic WO3 [18]. To illustrate the size uniformity of the as-prepared WO3 QDs, a histogram depicting the size distribution was generated based on the results obtained from the TEM images (N = 100), as depicted in Figure 3g–i. The sizes of the blue WO3 QDs, green WO3 QDs, and red WO3 QDs were found to be in the ranges of 20–40 nm (accounting for ~88% of the distribution), 30–60 nm (86%), and 50–80 nm (~78%), respectively. Consequently, the average sizes of the three different WO3 QDs were approximately ~30 nm, ~50 nm, and ~70 nm, respectively. Additionally, Figure S3 presents the selected area electron diffraction (SAED) patterns of the representative WO3 quantum dots (QDs), revealing their single-crystal nature. We confirmed that the crystal lattice of the WO3 QDs, synthesized through an intercalation-based method, revealed a distinctive diffraction pattern consistent with a monoclinic structure and high crystallinity.
Figure 4 illustrates the optical properties of the synthesized WO3 quantum dots (QDs) of varying sizes, as evaluated through photoluminescence (PL) and photoluminescence excitation (PLE) measurements. The emitted colors of the WO3 QDs, observed as blue, green, and red under UV lamp excitation at 365 nm, are depicted in the digital images of Figure 4a. The PL spectra, measured at the excitation of 310 nm, revealed maximum peak positions of 407 nm for blue WO3 QDs, 493 nm for green WO3 QDs, and 676 nm for red WO3 QDs, as shown in Figure 4b. Notably, the peak positions exhibited a consistent shift toward higher wavelengths with increasing size of the WO3 QDs, accompanied by peak broadening. The PL spectrum of the red WO3 QDs exhibited two types of shoulder peaks at approximately 630 nm and 800 nm. These results indicate that the emitting color, location, and range of the PL peaks were strongly influenced by the size and thickness of the WO3 QDs. Remarkably, the WO3 nanoparticles larger than the exciton Bohr radius exhibited photoluminescence with three distinct emitting colors, despite their sizes exceeding the exciton Bohr radius. These findings can be attributed to size-dependent properties arising from the formation of subdomains and functional groups on their surface or edges [19,20,21]. Additionally, PLE spectra were assessed at the maximum PL peaks, as depicted in Figure 4c. The maximum PLE peaks for blue, green, and red WO3 QDs were observed at 277 nm, 297 nm, and 328 nm, respectively. Furthermore, the maximum PLE peaks experienced a red shift with the increasing size of the WO3 QDs. All the WO3 dispersed in the solution exhibited light yellow colors, consistent with previous work [16]. Our as-prepared WO3 QDs displayed maximum peaks at various positions, accompanied by peak broadening, as shown in Figure 4d. Specifically, while bulk WO3 has been reported to exhibit a peak at 480 nm [22], the observed peaks for our WO3 QDs were situated differently. The blue-emitting WO3 QDs displayed peaks at around ~275 nm and ~300 nm, the green-emitting WO3 QDs showed a peak at around ~280 nm with broadening extending from 320 nm to 380 nm, and the red-emitting WO3 QDs exhibited broadened peaks spanning from 300 nm to 480 nm, respectively. These shifts in the absorption peaks could be attributed to the quantum size effect and surface states, which involved electron excitation from occupied orbitals to unoccupied anti-bonding components [23,24].
Furthermore, the quantum efficiency of the luminescence for the WO3 QDs with different emitting colors was analyzed using an absolute photoluminescence QY system, and the results are shown in Figure S4. This system quantified the total photon flux by integrating an integration sphere. The QYs for blue-emitting and green-emitting WO3 QDs were approximately 3.93% and 1.96%, respectively, whereas red-emitting WO3 QDs could not be measured. These results suggest that the red-emitting WO3 QDs possessed a wide size distribution, had low yield, and exhibited the formation of sub-domains with structural damages attributed to the stripping process, consequently reducing their quantum efficiency.
As illustrated in Figure 5a,b, the spring-like lamellar structure of pristine balsa wood remained intact after the delignification process. The overall structure of the delignified balsa exhibited a well-preserved macrostructure with directional alignment of cellulose nanofibers. In Figure 1, top-view digital (left) and SEM (right) images were provided for both pristine balsa and delignified balsa. Following the delignification and bleaching processes of the pristine balsa wood, substantial changes were not observed in the macroscopic structure, which maintained a rectangular-/circular-like shape with thinner channel walls. However, a noticeable alteration occurred in the reduction of the thickness of the cell walls and a change in color, accompanied by a shift from light brown to white. These transformations were attributed to the extraction of lignin and hemicellulose. The delignified balsa wood was impregnated with different types of WO3 QDs to investigate the characteristics of luminescent transparent woods. When exposed to a 365 nm UV lamp, the delignified balsa did not exhibit any emitting color, as depicted in the inset of the SEM image in Figure 5b. The luminescent woods with different emitting colors were also successfully produced by embedding on the surface of the three-dimensional cellulose-based structure, while there was no change in the colors, as shown in Figure 5c–e. Under excitation with a 365 nm UV lamp, the luminescent woods infused with green WO3 QDs exhibited a white emitting color (Figure 5f), whereas the one infused with blue WO3 QDs displayed a vibrant blue color (Figure 5g). The luminescent wood fabricated with red WO3 QDs did not exhibit a distinct emitting color (Figure 5h). Unfortunately, the rationale behind the white-emitting characteristics resulting from the integration of green-emitting WO3 QDs remained unclear, likely due to changes in optical properties arising from physical and chemical interactions between cellulose-based wood and WO3 QDs, along with potential QD agglomeration. This result suggests that transparent luminescent woods incorporating cellulose and WO3 QDs can create a synergy between a light diffuser and a conversion layer. A noticeably enhanced light propagation parallel to the fiber direction was also observed in our work under in-plane excitation.

4. Conclusions

This study successfully achieved the creation of scalable WO3 quantum dots of different sizes through the exfoliation of the WO3 intercalation compound. The synthesis of tungsten oxide quantum dots demonstrated precise control over their size and surface properties using three solvents (DMF, NMP, and formamide). This control was facilitated by leveraging changes in wettability based on the difference in surface tension between WO3 and the solvent. The peeling process yielded WO3 units with quantum dot-sized dimensions, emitting R.G.B at 365 nm and presenting a notable dispersibility and exceptional fluorescence stability. Additionally, delignified woods with various fluorescence characteristics were created by immersing them in WO3 QDs with different emitting colors. The luminescent woods infused with green WO3 QDs exhibited a white emitting color, whereas the one infused with blue WO3 QDs displayed a vibrant blue color. Consequently, the intercalation-based exfoliation of quantum dots enabled size control through simple peeling and solvent manipulation, showcasing the potential for selective applications in various fields such as sensors and displays, tailored to user preferences for particle size, and extending into the electrochromic domain.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/nano14110936/s1: Figure S1. Digital images of the WO3 QDs exfoliated in various solvents with distinct surface tensions at temperatures of 10 °C and 50 °C, Figure S2. SEM images of blue/green/red WO3 QDs, Figure S3: HR-TEM images and the selected area electron diffraction (SAED) patterns of the representative WO3 quantum dots (QDs), Figure S4: Quantum yields of blue WO3 QDs and green WO3 QDs measured by using the absolute photoluminescence QY system.

Author Contributions

This manuscript was written with contributions from all authors. K.H.P., N.C.K. and S.H.S. conceptualized the experiments and wrote the manuscript. Writing—original draft preparation, K.H.P., N.C.K. and S.H.S.; writing—review and editing, K.H.P., N.C.K. and S.H.S. All authors contributed to the data analysis and discussion of the results. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2019R1A6A1A03032988). Also, this research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2017R1C1B507647614). This research was supported by the Korea Institute for Advancement of Technology (KIAT) grant, funded by the Korean government (MOTIE). This work was conducted by Research Year Project at Kongju National University in 2022. This research was supported by the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant, funded by the Ministry of Education (2022R1A6C101A741).

Data Availability Statement

Data are contained within the article and Supplementary Materials.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [PubMed]
  2. Zheng, J.Y.; Sun, Q.; Cui, J.; Yu, X.; Li, S.; Zhang, L.; Jiang, S.; Ma, W.; Ma, R. Review on recent progress in WO3-based electrochromic films: Preparation methods and performance enhancement strategies. Nanoscale 2023, 15, 63–79. [Google Scholar] [CrossRef] [PubMed]
  3. Patel, K.; Panchal, C.; Desai, M.; Mehta, P. An investigation of the insertion of the cations H+, Na+, K+ on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate temperatures. Mater. Chem. Phys. 2010, 124, 884–890. [Google Scholar] [CrossRef]
  4. Park, K.H.; Yang, J.Y.; Jung, S.; Ko, B.M.; Song, G.; Hong, S.-J.; Kim, N.C.; Lee, D.; Song, S.H. Metallic phase transition metal dichalcogenide quantum dots as promising bio-imaging materials. Nanomaterials 2022, 12, 1645. [Google Scholar] [CrossRef] [PubMed]
  5. Ren, X.; Zhang, X.; Xie, H.; Cai, J.; Wang, C.; Chen, E.; Xu, S.; Ye, Y.; Sun, J.; Yan, Q. Perovskite quantum dots for emerging displays: Recent progress and perspectives. Nanomaterials 2022, 12, 2243. [Google Scholar] [CrossRef] [PubMed]
  6. Cong, S.; Tian, Y.; Li, Q.; Zhao, Z.; Geng, F. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 2014, 26, 4260–4267. [Google Scholar] [CrossRef] [PubMed]
  7. Cong, S.; Geng, F.; Zhao, Z. Tungsten oxide materials for optoelectronic applications. Adv. Mater. 2016, 28, 10518–10528. [Google Scholar] [PubMed]
  8. Wen, L.; Chen, L.; Zheng, S.; Zeng, J.; Duan, G.; Wang, Y.; Wang, G.; Chai, Z.; Li, Z.; Gao, M. Ultrasmall biocompatible WO3− x nanodots for multi-modality imaging and combined therapy of cancers. Adv. Mater. 2016, 28, 5072–5079. [Google Scholar] [PubMed]
  9. Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-zadeh, K. Nanostructured tungsten oxide–properties, synthesis, and applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
  10. Cushing, B.L.; Kolesnichenko, V.L.; O’connor, C.J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004, 104, 3893–3946. [Google Scholar] [CrossRef]
  11. Peng, H.; Liu, P.; Lin, D.; Deng, Y.; Lei, Y.; Chen, W.; Chen, Y.; Lin, X.; Xia, X.; Liu, A. Fabrication and multifunctional properties of ultrasmall water-soluble tungsten oxide quantum dots. Chem. Commun. 2016, 52, 9534–9537. [Google Scholar] [CrossRef] [PubMed]
  12. Zhan, Y.; Liu, Y.; Liu, Q.; Liu, Z.; Yang, H.; Lei, B.; Zhuang, J.; Hu, C. Size-controlled synthesis of fluorescent tungsten oxide quantum dots via one-pot ethanol-thermal strategy for ferric ions detection and bioimaging. Sens. Actuators B Chem. 2018, 255, 290–298. [Google Scholar] [CrossRef]
  13. Nikolaev, B.; Yakovleva, L.; Fedorov, V.; Li, H.; Gao, H.; Shevtsov, M. Nano-and Microemulsions in Biomedicine: From Theory to Practice. Pharmaceutics 2023, 15, 1989. [Google Scholar] [CrossRef] [PubMed]
  14. Yao, Y.; Zhao, Q.; Wei, W.; Chen, Z.; Zhu, Y.; Zhang, P.; Zhang, Z.; Gao, Y. WO3 quantum-dots electrochromism. Nano Energy 2020, 68, 104350. [Google Scholar] [CrossRef]
  15. Wang, S.; Kershaw, S.V.; Li, G.; Leung, M.K. The self-assembly synthesis of tungsten oxide quantum dots with enhanced optical properties. J. Mater. Chem. C 2015, 3, 3280–3285. [Google Scholar] [CrossRef]
  16. Fan, G.; Chen, D.; Li, T.; Yi, S.; Ji, H.; Wang, Y.; Zhang, Z.; Shao, G.; Fan, B.; Wang, H. Enhanced room-temperature ammonia-sensing properties of polyaniline-modified WO3 nanoplates derived via ultrasonic spray process. Sens. Actuators B Chem. 2020, 312, 127892. [Google Scholar] [CrossRef]
  17. Rastgoo-Deylami, M.; Javanbakht, M.; Omidvar, H.; Hooshyari, K.; Salarizadeh, P.; Askari, M.B. Nickel-doped monoclinic WO3 as high performance anode material for rechargeable lithium ion battery. J. Electroanal. Chem. 2021, 894, 115383. [Google Scholar] [CrossRef]
  18. Chen, D.; Ye, J. Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Funct. Mater. 2008, 18, 1922–1928. [Google Scholar] [CrossRef]
  19. Farzin, M.A.; Abdoos, H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta 2021, 224, 121828. [Google Scholar] [CrossRef]
  20. Kim, B.-H.; Yang, J.Y.; Park, K.H.; Lee, D.; Song, S.H. Competitive Effects of Oxidation and Quantum Confinement on Modulation of the Photophysical Properties of Metallic-Phase Tungsten Dichalcogenide Quantum Dots. Nanomaterials 2023, 13, 2075. [Google Scholar] [CrossRef]
  21. Yoon, H.; Chang, Y.H.; Song, S.H.; Lee, E.-S.; Jin, S.H.; Park, C.; Lee, J.; Kim, B.H.; Kang, H.J.; Kim, Y.-H. Intrinsic Photoluminescence Emission from Subdomained Graphene Quantum Dots. Adv. Mater. 2016, 28, 5255–5261. [Google Scholar] [CrossRef] [PubMed]
  22. Székely, I.; Kovács, G.; Baia, L.; Danciu, V.; Pap, Z. Synthesis of shape-tailored WO3 micro-/nanocrystals and the photocatalytic activity of WO3/TiO2 composites. Materials 2016, 9, 258. [Google Scholar] [CrossRef] [PubMed]
  23. Ahmadi, M.; Guinel, M.J.-F. Synthesis and characterization of tungstite (WO3· H2O) nanoleaves and nanoribbons. Acta Mater. 2014, 69, 203–209. [Google Scholar] [CrossRef]
  24. Mostafa, A.M.; Yousef, S.A.; Eisa, W.H.; Ewaida, M.A.; Al-Ashkar, E.A. WO3 quantum dot: Synthesis, characterization and catalytic activity. J. Mol. Struct. 2019, 1185, 351–356. [Google Scholar] [CrossRef]
Figure 1. Schematic illustration for fabrication steps of WO3 quantum dots of different sizes.
Figure 1. Schematic illustration for fabrication steps of WO3 quantum dots of different sizes.
Nanomaterials 14 00936 g001
Figure 2. Characterizations of the WO3 QDs and bulk WO3 powder. (a) SEM images. (b) Bulk WO3 powder. (c) Raman spectroscopy and (d,e) chemical composition for tungsten and oxygen measured by XPS. (W4f spectra (d) and O1s spectra (e)).
Figure 2. Characterizations of the WO3 QDs and bulk WO3 powder. (a) SEM images. (b) Bulk WO3 powder. (c) Raman spectroscopy and (d,e) chemical composition for tungsten and oxygen measured by XPS. (W4f spectra (d) and O1s spectra (e)).
Nanomaterials 14 00936 g002
Figure 3. Characterizations of the WO3 QDs of different sizes. (ac) AFM topology images (top) and thickness profiles (bottom) of the blue/green/red WO3 QDs. (di) TEM images of the blue/green/red WO3 QDs. Size distribution for (g) blue WO3 QDs, (h) green WO3 QDs, and (i) red WO3 QDs.
Figure 3. Characterizations of the WO3 QDs of different sizes. (ac) AFM topology images (top) and thickness profiles (bottom) of the blue/green/red WO3 QDs. (di) TEM images of the blue/green/red WO3 QDs. Size distribution for (g) blue WO3 QDs, (h) green WO3 QDs, and (i) red WO3 QDs.
Nanomaterials 14 00936 g003
Figure 4. Optical characterizations of the blue WO3 QDs, green WO3 QDs, and red WO3 QDs. (a) Digital images of the WO3 QDs under excitation with a 365 nm UV lamp. (b) Normalized PL spectra of the WO3 QDs under excitation at 310 nm. (c) Normalized PLE spectra of the WO33 QDs. (d) UV–vis spectra of the WO3 QDs.
Figure 4. Optical characterizations of the blue WO3 QDs, green WO3 QDs, and red WO3 QDs. (a) Digital images of the WO3 QDs under excitation with a 365 nm UV lamp. (b) Normalized PL spectra of the WO3 QDs under excitation at 310 nm. (c) Normalized PLE spectra of the WO33 QDs. (d) UV–vis spectra of the WO3 QDs.
Nanomaterials 14 00936 g004
Figure 5. Digital and SEM images of pristine balsa, delignified balsa, and WO3 quantum dots (QDs) impregnated in the delignified balsa structure. (a) Digital (left) and SEM (right) images of the pristine balsa. (b) Digital (left) and SEM (right) images of the delignified balsa. Inset of SEM images: delignified balsa under excitation with a 365 nm UV lamp (c) (d,e) digital images of WO3 QDs impregnated in the delignified balsa for blue, green, and red QDs, respectively. (fh) Digital images of WO3 QDs impregnated in the delignified balsa under excitation with a 365 nm UV lamp for blue, green, and red QDs, respectively.
Figure 5. Digital and SEM images of pristine balsa, delignified balsa, and WO3 quantum dots (QDs) impregnated in the delignified balsa structure. (a) Digital (left) and SEM (right) images of the pristine balsa. (b) Digital (left) and SEM (right) images of the delignified balsa. Inset of SEM images: delignified balsa under excitation with a 365 nm UV lamp (c) (d,e) digital images of WO3 QDs impregnated in the delignified balsa for blue, green, and red QDs, respectively. (fh) Digital images of WO3 QDs impregnated in the delignified balsa under excitation with a 365 nm UV lamp for blue, green, and red QDs, respectively.
Nanomaterials 14 00936 g005
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Park, K.H.; Kim, N.C.; Song, S.H. Fabrication of WO3 Quantum Dots with Different Emitting Colors and Their Utilization in Luminescent Woods. Nanomaterials 2024, 14, 936. https://doi.org/10.3390/nano14110936

AMA Style

Park KH, Kim NC, Song SH. Fabrication of WO3 Quantum Dots with Different Emitting Colors and Their Utilization in Luminescent Woods. Nanomaterials. 2024; 14(11):936. https://doi.org/10.3390/nano14110936

Chicago/Turabian Style

Park, Kwang Hyun, Nam Chul Kim, and Sung Ho Song. 2024. "Fabrication of WO3 Quantum Dots with Different Emitting Colors and Their Utilization in Luminescent Woods" Nanomaterials 14, no. 11: 936. https://doi.org/10.3390/nano14110936

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop