Recent Progress in the Applications of Langmuir–Blodgett Film Technology
Abstract
:1. Introduction
2. Principles of Langmuir–Blodgett Film Technology
3. Application of Langmuir–Blodgett Film Technology in Gas Sensors
4. Application of Langmuir–Blodgett Film Technology in Electrochemistry
5. Application of Langmuir–Blodgett Film Technology in Biomimetic Films
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ignes Mullol, J.; Claret, J.; Reigada, R.; Sagues, F. Spread monolayers: Structure, flows and dynamic self-organization phenomena. Phys. Rep. 2007, 448, 163–179. [Google Scholar] [CrossRef]
- Nobre, T.M.; Pavinatto, F.J.; Caseli, L.; Barros-Timmons, A.; Dynarowicz-Łatka, P.; Oliveira, O.N., Jr. Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models. Thin Solid Films 2015, 593, 158–188. [Google Scholar]
- Giner-Casares, J.J.; Brezesinski, G.; Möhwald, H. Langmuir monolayers as unique physical models. Curr. Opin. Colloid Interface Sci. 2014, 19, 176–182. [Google Scholar] [CrossRef]
- Stefaniu, C.; Brezesinski, G.; Möhwald, H. Langmuir monolayers as models to study processes at surfaces. Adv. Colloid Interface 2014, 208, 197–213. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids Part I. Solids. J. Am. Chem. Soc. 1917, 38, 2221–2295. [Google Scholar] [CrossRef]
- Blodgett, K.B. Films built by depositing successive monomolecular layers on a solid surface. J. Am. Chem. Soc. 1935, 57, 1007–1022. [Google Scholar] [CrossRef]
- Kaganer, V.M.; Moehwald, H.; Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 1999, 71, 779. [Google Scholar] [CrossRef]
- Miller, C.E.; Yu, C.H.; Abbott, N.L. Langmuir-Blodgett patterning: A bottom-up way to build mesoscale architectures with microscale features. Acc. Chem. Res. 2005, 38, 365–373. [Google Scholar]
- Park, S.; Abbott, N.L. Creation of large-scale assemblies of aligned lipid bilayers using a microfabricated silicon platform. Langmuir 2008, 24, 1336–1341. [Google Scholar]
- Xu, L.; Yu, Y.; Wang, Y.; Zhang, Y.; Zhu, H.; Cheng, X.; Jin, L. A review on the preparation and applications of Langmuir-Blodgett films. Mater. Chem. Front. 2019, 3, 919–946. [Google Scholar]
- Finkelmann, H.; Kock, H.J.; Rehage, G. Molecular layers of amphiphilic compounds on solid substrates: I. Preparation and structure of long chain fatty acid monolayers. Thin Solid Films 1981, 78, 261–270. [Google Scholar]
- Dynarowicz-Latka, P.; Dhanabalan, A.; Oliveira, O.N. Modern physicochemical research on Langmuir monolayers. Adv. Colloid Interface 2001, 91, 221–293. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J.P. 25th Anniversary Article: What can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 2013, 25, 6477–6512. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Advincula, R.C. Nanostructuring polymers, colloids, and nanomaterials at the air-water interface through Langmuir and Langmuir-Blodgett techniques. Soft Matter 2011, 7, 9829–9843. [Google Scholar] [CrossRef]
- Blodgett, K.B. Monomolecular films of fatty acids on glass. J. Am. Chem. Soc. 1934, 56, 495. [Google Scholar] [CrossRef]
- Matsuda, H.; Kawada, H.; Takimoto, K.; Morikawa, Y.; Eguchi, K.; Nakagiri, T. Conducting defects in Langmuir-Blodgett films. Thin Solid Films 1989, 178, 505–510. [Google Scholar] [CrossRef]
- Blodgett, K.B. Use of interference to extinguish reflection of light from glass. Phys. Rev. 1939, 55, 391–404. [Google Scholar] [CrossRef]
- Kuhn, H. Functionalized monolayer assembly manipulation. Thin Solid Films 1983, 99, 1–16. [Google Scholar] [CrossRef]
- Brezesinski, G.; Möhwald, H. Langmuir monolayers to study interactions at model membrane surfaces. Adv. Colloid Interface 2003, 100, 563–584. [Google Scholar] [CrossRef]
- Pavinatto, F.J.; Nobre, T.M.; Caseli, L.; Oliveira, O.N., Jr. Bioactive biomolecules interacting with cellular membranes: Modelling with Langmuir monolayers. Front. Bioact. Compd. 2016, 1, 219–255. [Google Scholar]
- Hussain, A.S.; Dey, B.; Bhattacharjee, D.; Mehta, N. Unique supramolecular assembly through Langmuir-Blodgett (LB) technique. Heliyon 2018, 4, e01038. [Google Scholar] [CrossRef] [PubMed]
- Andrić, S.; Sarajlić, M.; Frantlović, M.; Jokić, I.; Vasiljević-Radović, D.; Spasenović, M. Carbon dioxide sensing with Langmuir-Blodgett Graphene films. Chemosensors 2021, 9, 342. [Google Scholar] [CrossRef]
- Chattopadhyay, P.; Wang, L.; Eychmüller, A.; Simmchen, J. An undergraduate project on the assembly of Langmuir-Blodgett films of colloidal particles. J. Chem. Educ. 2022, 99, 952–956. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, X.; Jiang, L. A review on Langmuir-Blodgett films for gas sensing applications. Appl. Mater. Today 2021, 23, 101025. [Google Scholar]
- Singh, R.S. Langmuir and Langmuir-Blodgett films of aromatic amphiphiles. Soft Mater. 2022, 20, 57–98. [Google Scholar] [CrossRef]
- Abdulla, S.; Pullithadathil, B. Unidirectional Langmuir-Blodgett-mediated alignment of polyaniline-functionalized multiwalled carbon nanotubes for NH3 gas sensor applications. Langmuir 2020, 36, 11618–11628. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Lin, J.Y. Nanometer-thick films of aligned ZnO nanowires sensitized with Au nanoparticles for few-ppb-level acetylene detection. ACS Appl. Nano Mater. 2020, 3, 9174–9184. [Google Scholar] [CrossRef]
- Li, N.; Zhao, T.; Bian, P.; Liu, S.; Ma, J.; Liu, B.; Jiao, T. Gas-responsive and self-powered visual composite Langmuir-Blodgett films for ultrathin gas sensors. Langmuir 2022, 38, 6761–6770. [Google Scholar] [CrossRef] [PubMed]
- Çapan, İ.; Capan, R.; Erdogan, M.; Bayrakci, M.; Ozmen, M. Sensing behaviors of lipophilic calix arene phosphonate based Langmuir-Blodgett thin films for detection of volatile organic vapors. Sens. Actuator A Phys. 2022, 347, 113947. [Google Scholar] [CrossRef]
- Erdogan, C.O.; Capan, R.; Acikbas, Y.; Ozmen, M.; Bayrakci, M. Sensor application of pyridine modified calix arene Langmuir-Blodgett thin film. Optik 2022, 265, 169492. [Google Scholar] [CrossRef]
- Gorbachev, I.; Smirnov, A.; Ivanov, G.; Avramov, I.; Datsuk, E.; Venelinov, T.; Kuznetsova, I. Langmuir-Blodgett films of arachidic and stearic acids as sensitive coatings for chloroform HF SAW sensors. Sensors 2022, 23, 100. [Google Scholar] [CrossRef]
- Li, N.; Wang, C.; Li, L.; Hao, Z.; Gu, J.; Wang, M.; Jiao, T. Chemical gas sensor, surface enhanced Raman scattering and photoelectrics of composite Langmuir-Blodgett films consisting of polypeptide and dye molecules. Colloids Surfaces A 2023, 663, 131067. [Google Scholar] [CrossRef]
- Roh, K.M.; Jo, E.H.; Chang, H.; Han, T.H.; Jang, H.D. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir-Blodgett technique. J. Solid. State. Chem. 2015, 224, 71–75. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Z.; Zhou, S.; Wang, F.; Zhang, C.; Lu, K. Langmuir-Blodgett assembly of carboxylic multiwalled carbon nanotubes-nafion for amperometric sensing of codeine. J. Electrochem. Soc. 2019, 166, H592. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Qian, D.J. Visual luminescent probes constructed by Eu3+ complex-functionalized silica nanocomposites and their Langmuir-Blodgett films at interfaces. Langmuir 2020, 36, 14092–14103. [Google Scholar] [CrossRef]
- Graewe, L.; Hupfer, M.L.; Schulz, M.; Mahammed, A.; Gross, Z.; Presselt, M. Supramolecular control of photonic response and sensing of nitricoxide using iron (III) corrole monolayers and their stacks. ChemPlusChem 2023, 88, e202200260. [Google Scholar] [CrossRef]
- Oliveira, O.N., Jr.; Caseli, L.; Ariga, K. The past and the future of Langmuir and Langmuir-Blodgett films. Chem. Rev. 2022, 122, 6459–6513. [Google Scholar] [CrossRef] [PubMed]
- Uehara, T.M.; Migliorini, F.L.; Facure, M.H.; Palma Filho, N.B.; Miranda, P.B.; Zucolotto, V.; Correa, D.S. Nanostructured scaffolds containing graphene oxide for nanomedicine applications. Polym. Adv. Technol. 2022, 33, 591–600. [Google Scholar] [CrossRef]
- Rodrigues, R.T.; Siqueira, J.R., Jr.; Caseli, L. Structural and viscoelastic properties of floating monolayers of a pectinolytic enzyme and their influence on the catalytic properties. J. Colloid Interface Sci. 2021, 589, 568–577. [Google Scholar] [CrossRef]
- da Rocha Rodrigues, R.; da Silva, R.L.C.G.; Caseli, L.; Peres, L.O. Conjugated polymers as Langmuir and Langmuir-Blodgett films: Challenges and applications in nanostructured devices. Adv. Colloid Interface 2020, 285, 102277. [Google Scholar] [CrossRef]
- Caseli, L. Enzymes immobilized in Langmuir-Blodgett films: Why determining the surface properties in Langmuir monolayer is important? An. Acad. Bras. Ciênc. 2018, 90, 631–644. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.L.C.G.; da Silva, H.F.O.; da Silva Gasparotto, L.H.; Caseli, L. How the interaction of PVP-stabilized Ag nanoparticles with models of cellular membranes at the air-water interface is modulated by the monolayer composition. J. Colloid Interface Sci. 2018, 512, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Bian, P.; Li, N.; Li, G.; Zhang, S.; Liu, X.; Gu, J.; Jiao, T. Interfacial aggregation behavior of novel carbazole-based composite Langmuir-Blodgett films for photoelectric conversion and catalytic performance. Colloids Surf. A 2023, 656, 130460. [Google Scholar] [CrossRef]
- Divagar, M.; Ponpandian, N.; Viswanathan, C. Langmuir-Blodgett deposited Na3V2 (PO4)3-MnO2 nanocomposite thin film electrodes for hybrid energy storage application. Mater. Sci. Eng. B 2021, 270, 115229. [Google Scholar] [CrossRef]
- Scholl, F.A.; Oliveira, D.A.; Siqueira, J.R., Jr.; Caseli, L. Exploring Langmuir-Blodgett films with phospholipid-graphene oxide/MnO2 as a hybrid nanostructured interface for supercapacitor applications. Colloids Surf. A 2023, 664, 131128. [Google Scholar] [CrossRef]
- Medina-Plaza, C.; Furini, L.N.; Constantino, C.J.L.; De Saja, J.A.; Rodriguez-Mendez, M.L. Synergistic electrocatalytic effect of nanostructured mixed films formed by functionalised gold nanoparticles and bisphthalocyanines. Anal. Chim. Acta 2014, 851, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zheng, B.; Li, L.; Song, J.; Song, L.; Zhang, M. Fewer-layer conductive metal-organic Langmuir-Blodgett films as electrocatalysts enable an ultralow detection limit of H2O2. Appl. Surf. Sci. 2021, 539, 148255. [Google Scholar] [CrossRef]
- Ning, W.; Wang, Z.; Xue, Y.; Wang, X.; Li, W.; Zhang, Y.; Miao, S. Catalytic synergistic effects between Pt nanocrystals and elementary graphite oxides: A new insight detected by Langmuir-Blodgett technique. Colloids Surf. A 2020, 585, 124145. [Google Scholar] [CrossRef]
- Zhou, S.; Fang, C.; Song, X.; Liu, G. Highly ordered carbon coating prepared with polyvinylidene chloride precursor for high-performance silicon anodes in lithium-ion batteries. Batter. Supercaps 2021, 4, 240–247. [Google Scholar] [CrossRef]
- Fang, C.; Xiao, H.; Zheng, T.; Bai, H.; Liu, G. Organic solvent free process to fabricate high performance silicon/graphite composite anode. J. Compos. Sci. 2021, 5, 188. [Google Scholar] [CrossRef]
- Kim, J.; Ma, H.; Cha, H.; Lee, H.; Sung, J.; Seo, M.; Cho, J. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ. Sci. 2018, 11, 1449–1459. [Google Scholar] [CrossRef]
- Fang, C.; Liu, Z.; Lau, J.; Elzouka, M.; Zhang, G.; Khomein, P.; Liu, G. Gradient polarity solvent wash for separation and analysis of electrolyte decomposition products on electrode surfaces. J. Electrochem. Soc. 2020, 167, 020506. [Google Scholar] [CrossRef]
- McBrayer, J.D.; Rodrigues, M.T.F.; Schulze, M.C.; Abraham, D.P.; Apblett, C.A.; Bloom, I.; Cunningham, B. Calendar aging of silicon-containing batteries. Nat. Energy 2021, 6, 866–872. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, C.; Zhang, G.; Hubble, D.; Nallapaneni, A.; Zhu, C.; Liu, G. A Micelle electrolyte enabled by fluorinated ether additives for polysulfide suppression and Li metal stabilization in Li-S battery. Front. Chem. 2020, 8, 484. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, E.J.; Frisco, S.; Pekarek, R.T.; Stetson, C.; Huey, Z.; Harvey, S.; Veith, G.M. Examining CO2 as an additive for solid electrolyte interphase formation on silicon anodes. J. Electrochem. Soc. 2021, 168, 030534. [Google Scholar] [CrossRef]
- Fang, C.; Tran, T.N.; Zhao, Y.; Liu, G. Electrolyte decomposition and solid electrolyte interphase revealed by mass spectrometry. Electrochim. Acta 2021, 399, 139362. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Jeong, H.S.; Kim, H.; Lee, H.; Ha, J.M.; Koo, J. Spontaneous hybrids of graphene and carbon nanotube arrays at the liquid-gas interface for Li-ion battery anodes. Chem. Commun. 2018, 54, 5229–5232. [Google Scholar] [CrossRef]
- Ramasamy, S.; Nagamony, P.; Chinnuswamy, V. Self-assembled SnO2/reduced graphene oxide nanocomposites via LangmuirBlodgett technique as anode materials for Li-ion batteries. Mater. Lett. 2018, 218, 295–298. [Google Scholar] [CrossRef]
- Eom, H.J.; Jang, J.H.; Lee, D.W.; Kim, S.; Lee, K.Y. Catalytic combustion of hydrogen over La1−xSrxCoO3−δ+Co3O4 and LaMn1−xCuxO3+δ under simulated MCFC anode off-gas conditions. J. Mol. Catal. A Chem. 2011, 349, 48–54. [Google Scholar] [CrossRef]
- Silva, C.A.; Nobre, T.M.; Pavinatto, F.J.; Oliveira, O.N., Jr. Interaction of chitosan and mucin in a biomembrane model environment. J. Colloid Interface Sci. 2012, 376, 289–295. [Google Scholar] [CrossRef]
- Wang, K.H.; Wu, J.Y.; Chen, L.H.; Lee, Y.L. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance. Appl. Surf. Sci. 2016, 366, 202–209. [Google Scholar] [CrossRef]
- Kuo, T.R.; Chen, Y.C.; Wang, C.I.; Shen, T.H.; Wang, H.Y.; Pan, X.Y.; Chen, C.C. Highly oriented Langmuir-Blodgett film of silver cuboctahedra as an effective matrix-free sample plate for surface-assisted laser desorption/ionization mass spectrometry. Nanoscale 2017, 9, 11119–11125. [Google Scholar] [CrossRef]
- Gorbachev, I.; Smirnov, A.; Ivanov, G.R.; Venelinov, T.; Amova, A.; Datsuk, E.; Kolesov, V. Langmuir-Blodgett films with immobilized glucose oxidase enzyme molecules for acoustic glucose sensor application. Sensors 2023, 23, 5290. [Google Scholar] [CrossRef]
- Solanki, S.; Soni, A.; Pandey, M.K.; Biradar, A.; Sumana, G. Langmuir-Blodgett nanoassemblies of the MoS2-Au composite at the air-water interface for dengue detection. ACS Appl. Mater. Interfaces 2018, 10, 3020–3028. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Molinari, M.; Aguié-Béghin, V. Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: Applications with Cellulose Nanocrystals. Langmuir 2018, 34, 9376–9386. [Google Scholar] [CrossRef]
- Johnson, K.I.; Borges, W.; Sharma, P.R.; Sharma, S.K.; Chang, H.-Y.; Abou-Krisha, M.M.; Alhamzani, A.G.; Hsiao, B.S. Cellulose Sulfate Nanofibers for Enhanced Ammonium Removal. Nanomaterials 2024, 14, 507. [Google Scholar] [CrossRef]
- Breazu, C.; Rasoga, O.; Socol, M.; Ganea, P.; Tite, T.; Matei, E.; Stanculescu, A. The effect of fullerene layer on the aggregates formation in amyloid beta Langmuir-Blodgett films. Appl. Surf. Sci. 2021, 537, 147800. [Google Scholar] [CrossRef]
- Chanci, K.; Diosa, J.; Giraldo, M.A.; Mesa, M. Physical behavior of KR-12 peptide on solid surfaces and Langmuir-Blodgett lipid films: Complementary approaches to its antimicrobial mode against S. aureus. BBA-Biomembr. 2022, 1864, 183779. [Google Scholar] [CrossRef]
Comparison Criteria | Langmuir–Blodgett (LB) Technique | Langmuir–Schaefer (LS) Technique |
---|---|---|
Basic Principle | Forms monolayers or multilayers at the air–water interface and transfers them to a solid substrate by vertically lifting or lowering the substrate. | Forms monolayers at the air–water interface and transfers them to a solid substrate by horizontal contact. |
Transfer Process | Vertical transfer, in which the substrate moves perpendicular to the air–water interface. | Horizontal transfer, in which the substrate moves parallel to the air–water interface. |
Film Structure Control | Allows for precise control over the number of layers and molecular arrangement and is suitable for creating highly ordered multilayer structures. | Primarily used for creating monolayers or a few layers, with less control over molecular arrangement. |
Application Fields | Electronic devices, sensors, biomimetic membranes, etc. | Monolayers, surface modification, functionalization, etc. |
Advantages | Enables precise control over the film’s thickness and arrangement and is suitable for complex multilayer structures. | Gentle transfer process and less damaging to molecular films and is suitable for softer or unstable molecular films. |
Disadvantages | The transfer process can introduce defects, especially for softer or unstable molecular films. | Difficult to precisely control multilayer structure and arrangement and is not suitable for complex multilayer structures. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, W.; Li, Q.; Wang, R.; Zhang, L.; Liu, Z.; Jiao, T. Recent Progress in the Applications of Langmuir–Blodgett Film Technology. Nanomaterials 2024, 14, 1039. https://doi.org/10.3390/nano14121039
Gu W, Li Q, Wang R, Zhang L, Liu Z, Jiao T. Recent Progress in the Applications of Langmuir–Blodgett Film Technology. Nanomaterials. 2024; 14(12):1039. https://doi.org/10.3390/nano14121039
Chicago/Turabian StyleGu, Wenhui, Qing Li, Ran Wang, Lexin Zhang, Zhiwei Liu, and Tifeng Jiao. 2024. "Recent Progress in the Applications of Langmuir–Blodgett Film Technology" Nanomaterials 14, no. 12: 1039. https://doi.org/10.3390/nano14121039
APA StyleGu, W., Li, Q., Wang, R., Zhang, L., Liu, Z., & Jiao, T. (2024). Recent Progress in the Applications of Langmuir–Blodgett Film Technology. Nanomaterials, 14(12), 1039. https://doi.org/10.3390/nano14121039