P-Type ZnO Films Made by Atomic Layer Deposition and Ion Implantation
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Hall Effect Measurements
3.2. Rutherford Backscattering Spectrometry
3.3. Raman Spectroscopy
3.4. PL Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiomarsipour, N.; Razavi, R.S.; Ghani, K.; Kioumarsipour, M. Evaluation of shape and size effects on optical properties of ZnO pigment. Appl. Surf. Sci. 2013, 270, 33–38. [Google Scholar] [CrossRef]
- Kulshreshtha, A.P. UV irradiation effect on the electrical properties of ZnO thermal control coating pigment. IEEE Trans. Aerosp. Electron. Syst. 1970, AES–6, 468–472. [Google Scholar] [CrossRef]
- Massazza, F. Admixtures in concrete. Advances in cement technology. In Critical Reviews and Case Studies on Manufacturing, Optimization and Use; Pergamon Press: New Delhi, India, 1983; pp. 569–648. [Google Scholar]
- Einzinger, R. Metal oxide varistors. Annu. Rev. Mater. Sci. 1987, 17, 299–321. [Google Scholar] [CrossRef]
- Zhang, Y.; Nayak, T.R.; Hong, H.; Cai, W. Biomedical applications of zinc oxide nanomaterials. Curr. Mol. Med. 2013, 13, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Weng, Z.; Li, X.; Liu, X.; Wu, S.; Yeung, K.; Wang, X.; Cui, Z.; Yang, X.; Chu, P.K. Biomedical applications of functionalized ZnO nanomaterials: From biosensors to bioimaging. Adv. Mater. Interfaces 2016, 3, 1500494. [Google Scholar] [CrossRef]
- Sharma, D.K.; Shukla, S.; Sharma, K.K.; Kumar, V. A review on ZnO: Fundamental properties and applications. Mater. Today Proc. 2022, 49, 3028–3035. [Google Scholar] [CrossRef]
- Kumari, V.; Mittal, A.; Jindal, J.; Yadav, S.; Kumar, N. S-, N-and C-doped ZnO as semiconductor photocatalysts: A review. Front. Mater. Sci. 2019, 13, 1–22. [Google Scholar] [CrossRef]
- Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 809–817. [Google Scholar] [CrossRef]
- Miccoli, I.; Spampinato, R.; Marzo, F.; Prete, P.; Lovergine, N. DC-magnetron sputtering of ZnO: Al films on (00.1) Al2O3 substrates from slip-casting sintered ceramic targets. Appl. Surf. Sci. 2014, 313, 418–423. [Google Scholar] [CrossRef]
- Wu, M.; Chen, W.J.; Shen, Y.H.; Huang, F.Z.; Li, C.H.; Li, S.K. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl Mater Interfaces 2014, 6, 15052–15060. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, B.; Lin, S. p-type ZnO for photocatalytic water splitting. APL Mater. 2022, 10, 030901. [Google Scholar] [CrossRef]
- Ratajczak, R.; Guziewicz, E.; Prucnal, S.; Łuka, G.; Böttger, R.; Heller, R.; Mieszczynski, C.; Wozniak, W.; Turos, A. Luminescence in the visible region from annealed thin ALD-ZnO films implanted with different rare earth ions. Phys. Status Solidi A 2018, 215, 1700889. [Google Scholar] [CrossRef]
- Ratajczak, R.; Prucnal, S.; Guziewicz, E.; Mieszczynski, C.; Snigurenko, D.; Stachowicz, M.; Skorupa, W.; Turos, A. The photoluminescence response to structural changes of Yb implanted ZnO crystals subjected to non-equilibrium processing. J. Appl. Phys. 2017, 121, 075101. [Google Scholar] [CrossRef]
- Ratajczak, R.; Guziewicz, E.; Prucnal, S.; Mieszczynski, C.; Jozwik, P.; Barlak, M.; Romaniuk, S.; Gieraltowska, S.; Wozniak, W.; Heller, R. Enhanced Luminescence of Yb3+ Ions Implanted to ZnO through the Selection of Optimal Implantation and Annealing Conditions. Materials 2023, 16, 1756. [Google Scholar] [CrossRef] [PubMed]
- Prucnal, S.; Wu, J.; Berencén, Y.; Liedke, M.; Wagner, A.; Liu, F.; Wang, M.; Rebohle, L.; Zhou, S.; Cai, H. Engineering of optical and electrical properties of ZnO by non-equilibrium thermal processing: The role of zinc interstitials and zinc vacancies. J. Appl. Phys. 2017, 122, 035303. [Google Scholar] [CrossRef]
- Bandopadhyay, K.; Mitra, J. Zn interstitials and O vacancies responsible for n-type ZnO: What do the emission spectra reveal? Rsc Adv. 2015, 5, 23540–23547. [Google Scholar] [CrossRef]
- Das, R.; Ray, S. Zinc oxide—A transparent, conducting IR-reflector prepared by rf-magnetron sputtering. J. Phys. D Appl. Phys. 2002, 36, 152. [Google Scholar] [CrossRef]
- Zhang, G.; Steuer, O.; Li, R.; Cheng, Y.; Hübner, R.; Helm, M.; Zhou, S.; Liu, Y.; Prucnal, S. Al-delta-doped ZnO films made by atomic layer deposition and flash-lamp annealing for low-emissivity coating. Appl. Surf. Sci. 2024, 648, 159046. [Google Scholar] [CrossRef]
- Fan, J.C.; Sreekanth, K.; Xie, Z.; Chang, S.; Rao, K.V. p-Type ZnO materials: Theory, growth, properties and devices. Prog. Mater. Sci. 2013, 58, 874–985. [Google Scholar] [CrossRef]
- Tang, K.; Gu, S.-L.; Ye, J.-D.; Zhu, S.-M.; Zhang, R.; Zheng, Y.-D. Recent progress of the native defects and p-type doping of zinc oxide. Chin. Phys. B 2017, 26, 047702. [Google Scholar] [CrossRef]
- Guziewicz, E.; Krajewski, T.A.; Przezdziecka, E.; Korona, K.P.; Czechowski, N.; Klopotowski, L.; Terziyska, P. Zinc Oxide Grown by Atomic Layer Deposition: From Heavily n-Type to p-Type Material. Phys. Status Solidi B 2020, 257, 1900472. [Google Scholar] [CrossRef]
- Zeng, Y.; Ye, Z.; Xu, W.; Li, D.; Lu, J.; Zhu, L.; Zhao, B. Dopant source choice for formation of p-type ZnO: Li acceptor. Appl. Phys. Lett. 2006, 88, 062107. [Google Scholar] [CrossRef]
- Bu, I.Y. Sol-gel production of p-type ZnO thin film by using sodium doping. Superlattices Microstruct. 2016, 96, 59–66. [Google Scholar] [CrossRef]
- Lin, S.; Lu, J.; Ye, Z.; He, H.; Gu, X.; Chen, L.; Huang, J.; Zhao, B. p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. Solid State Commun. 2008, 148, 25–28. [Google Scholar] [CrossRef]
- Hwang, D.-K.; Kim, H.-S.; Lim, J.-H.; Oh, J.-Y.; Yang, J.-H.; Park, S.-J.; Kim, K.-K.; Look, D.C.; Park, Y. Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering. Appl. Phys. Lett. 2005, 86, 151917. [Google Scholar] [CrossRef]
- Lee, W.-J.; Kang, J.; Chang, K.-J. Defect properties and p-type doping efficiency in phosphorus-doped ZnO. Phys. Rev. B 2006, 73, 024117. [Google Scholar] [CrossRef]
- Joseph, M.; Tabata, H.; Kawai, T. p-type electrical conduction in ZnO thin films by Ga and N codoping. Jpn. J. Appl. Phys. 1999, 38, L1205. [Google Scholar] [CrossRef]
- Ye, Z.; He, H.; Jiang, L. Co-doping: An effective strategy for achieving stable p-type ZnO thin films. Nano Energy 2018, 52, 527–540. [Google Scholar] [CrossRef]
- Lu, J.; Ye, Z.; Zhuge, F.; Zeng, Y.; Zhao, B.; Zhu, L. p-type conduction in N–Al co-doped ZnO thin films. Appl. Phys. Lett. 2004, 85, 3134–3135. [Google Scholar] [CrossRef]
- Raha, S.; Ahmaruzzaman, M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef]
- Ziegler, J.F. Ion Implantation Science and Technology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Myers, M.; Myers, M.; General, M.; Lee, J.; Shao, L.; Wang, H. P-type ZnO thin films achieved by N+ ion implantation through dynamic annealing process. Appl. Phys. Lett. 2012, 101, 112101. [Google Scholar] [CrossRef]
- Lyons, J.L.; Janotti, A.; Van de Walle, C.G. Why nitrogen cannot lead to p-type conductivity in ZnO. Appl. Phys. Lett. 2009, 95, 252105. [Google Scholar] [CrossRef]
- Schmidt, M.; Ellguth, M.; Schmidt, F.; Lüder, T.; Wenckstern, H.V.; Pickenhain, R.; Grundmann, M.; Brauer, G.; Skorupa, W. Defects in a nitrogen-implanted ZnO thin film. Phys. Status Solidi B 2010, 247, 1220–1226. [Google Scholar] [CrossRef]
- Das, A.; Basak, D. Interplay of defects in low energy nitrogen implanted ZnO nanorods. Appl. Surf. Sci. 2021, 564, 150424. [Google Scholar] [CrossRef]
- Li, P.; Deng, S.-H.; Huang, J. First-principles studies on the dominant acceptor and the activation mechanism of phosphorus-doped ZnO. Appl. Phys. Lett. 2011, 99, 111902. [Google Scholar] [CrossRef]
- Das, A.; Basak, D. Efficacy of ion implantation in zinc oxide for optoelectronic applications: A review. ACS Appl. Electron. Mater. 2021, 3, 3693–3714. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, F.; Prucnal, S.; Gao, K.; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M. Hyperdoping silicon with selenium: Solid vs. liquid phase epitaxy. Sci. Rep. 2015, 5, 8329. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Lim, J.-H.; Kim, K.-K.; Hwang, D.-K.; Kim, H.-S.; Oh, J.-Y.; Park, S.-J. Formation and effect of thermal annealing for low-resistance Ni/Au ohmic contact to phosphorous-doped p-type ZnO. J. Electrochem. Soc. 2005, 152, G179. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202. [Google Scholar] [CrossRef]
- Lopatiuk-Tirpak, O.; Schoenfeld, W.; Chernyak, L.; Xiu, F.; Liu, J.; Jang, S.; Ren, F.; Pearton, S.; Osinsky, A.; Chow, P. Carrier concentration dependence of acceptor activation energy in p-type ZnO. Appl. Phys. Lett. 2006, 88, 202110. [Google Scholar] [CrossRef]
- Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 1989, 28, L2112. [Google Scholar] [CrossRef]
- Pal, S.; Mondal, A.; Sarkar, A.; Chattopadhyay, S.; Jana, D. Ion beam-induced defects in ZnO: A radiation hard metal oxide. In Metal Oxide Defects; Elsevier: Amsterdam, The Netherlands, 2023; pp. 567–610. [Google Scholar]
- Turos, A.; Jóźwik, P.; Wójcik, M.; Gaca, J.; Ratajczak, R.; Stonert, A. Mechanism of damage buildup in ion bombarded ZnO. Acta Mater. 2017, 134, 249–256. [Google Scholar] [CrossRef]
- Bergman, L.; Chen, X.-B.; Huso, J.; Morrison, J.L.; Hoeck, H. Raman scattering of polar modes of ZnO crystallites. J. Appl. Phys. 2005, 98, 093507. [Google Scholar] [CrossRef]
- Zhang, P.; Kong, C.; Li, W.; Qin, G.; Xu, Q.; Zhang, H.; Ruan, H.; Cui, Y.; Fang, L. The origin of the∼ 274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO: N thin films. Appl. Surf. Sci. 2015, 327, 154–158. [Google Scholar] [CrossRef]
- Ye, J.; Gu, S.; Zhu, S.; Liu, S.; Zheng, Y.; Zhang, R.; Shi, Y.; Chen, Q.; Yu, H.; Ye, Y. Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films. Appl. Phys. Lett. 2006, 88, 101905. [Google Scholar] [CrossRef]
- Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202. [Google Scholar] [CrossRef]
- Kaschner, A.; Haboeck, U.; Strassburg, M.; Strassburg, M.; Kaczmarczyk, G.; Hoffmann, A.; Thomsen, C.; Zeuner, A.; Alves, H.; Hofmann, D. Nitrogen-related local vibrational modes in ZnO: N. Appl. Phys. Lett. 2002, 80, 1909–1911. [Google Scholar] [CrossRef]
- Bundesmann, C.; Ashkenov, N.; Schubert, M.; Spemann, D.; Butz, T.; Kaidashev, E.; Lorenz, M.; Grundmann, M. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 2003, 83, 1974–1976. [Google Scholar] [CrossRef]
- Gluba, M.; Nickel, N.; Karpensky, N. Interstitial zinc clusters in zinc oxide. Phys. Rev. B 2013, 88, 245201. [Google Scholar] [CrossRef]
- Liang, N.; Chen, T.; Chang, H.; Chou, Y.; Wang, S.-Y. Surface effects on Raman scattering from Sb deposited on Ag-island films. Opt. Lett. 1983, 8, 374–376. [Google Scholar] [CrossRef]
- Fabbri, F.; Villani, M.; Catellani, A.; Calzolari, A.; Cicero, G.; Calestani, D.; Calestani, G.; Zappettini, A.; Dierre, B.; Sekiguchi, T. Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci. Rep. 2014, 4, 5158. [Google Scholar] [CrossRef]
- Sokol, A.A.; French, S.A.; Bromley, S.T.; Catlow, C.R.A.; van Dam, H.J.; Sherwood, P. Point defects in ZnO. Faraday Discuss. 2007, 134, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ding, J.; Guo, W.; Chen, G.; Ma, S. Blue-green emission mechanism and spectral shift of Al-doped ZnO films related to defect levels. Rsc Adv. 2013, 3, 12327–12333. [Google Scholar] [CrossRef]
- McCluskey, M.D.; Jokela, S. Defects in ZnO. J. Appl. Phys. 2009, 106, 071101. [Google Scholar] [CrossRef]
- Liang, Z.; Yu, X.; Lei, B.; Liu, P.; Mai, W. Novel blue-violet photoluminescence from sputtered ZnO thin films. J. Alloys Compd. 2011, 509, 5437–5440. [Google Scholar] [CrossRef]
- Alvi, N.H.; ul Hasan, K.; Nur, O.; Willander, M. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res. Lett. 2011, 6, 130. [Google Scholar] [CrossRef]
- Sohn, J.I.; Jung, Y.-I.; Baek, S.-H.; Cha, S.; Jang, J.E.; Cho, C.-H.; Kim, J.H.; Kim, J.M.; Park, I.-K. A low temperature process for phosphorous doped ZnO nanorods via a combination of hydrothermal and spin-on dopant methods. Nanoscale 2014, 6, 2046–2051. [Google Scholar] [CrossRef] [PubMed]
- Guziewicz, E.; Przezdziecka, E.; Snigurenko, D.; Jarosz, D.; Witkowski, B.; Dluzewski, P.; Paszkowicz, W. Abundant acceptor emission from nitrogen-doped ZnO films prepared by atomic layer deposition under oxygen-rich conditions. ACS Appl. Mater. Interfaces 2017, 9, 26143–26150. [Google Scholar] [CrossRef]
- Pan, X.; Guo, W.; Ye, Z.; Liu, B.; Che, Y.; He, H.; Pan, X. Optical properties of antimony-doped p-type ZnO films fabricated by pulsed laser deposition. J. Appl. Phys. 2009, 105, 113516. [Google Scholar] [CrossRef]
Implanted Element | Low Implantation Dose | High Implantation Dose | ||||
---|---|---|---|---|---|---|
Energy (keV) | Fluence (cm−2) | Dopant Concentration (cm−3) | Energy (keV) | Fluence (cm−2) | Dopant Concentration (cm−3) | |
Phosphorus (P) | 90 | 7.5 × 1015 | 8 × 1020 | 90 | 1.5 × 1016 | 1.6 × 1021 |
30 | 1.5 × 1015 | 30 | 3 × 1015 | |||
Antimony (Sb) | 300 | 6 × 1015 | 8 × 1020 | 300 | 1.2 × 1016 | 1.6 × 1021 |
100 | 1.7 × 1015 | 100 | 3.4 × 1015 |
Growth and Implantation Conditions | Carrier Concentration (cm−3)/Mobility (cm2/Vs) | ||||
---|---|---|---|---|---|
Not Annealed | FLA, N2, 23 ms | FLA, O2, 23 ms | RTA, N2, 1 min | RTA, O2, 1 min | |
PZO 130 °C LD | −4.70 × 1020 | 1.91 × 1018/4.65 | −3.05 × 1019 | 1.15 × 1016/10.08 | 2.21 × 1016/4.90 |
PZO 130 °C HD | −7.13 × 1020 | −1.22 × 1018 | 6.98 × 1017/4.65 | 1.87 × 1016/12.71 | 1.55 × 1014/- |
PZO 200 °C LD | −5.06 × 1020 | 2.84 × 1017/6.72 | 1.87 × 1018/2.81 | 6.00 × 1014/- | 1.21 × 1016/6.34 |
PZO 200 °C HD | −7.06 × 1020 | −3.41 × 1020 | −2.95 × 1017 | 6.36 × 1014/- | 3.38 × 1016/8.39 |
SZO 130 °C LD | −4.53 × 1019 | −5.57 × 1019 | −3.58 × 1019 | uncertain | uncertain |
SZO 130 °C HD | −2.82 × 1019 | −5.12 × 1019 | −6.53 × 1019 | uncertain | uncertain |
SZO 200 °C LD | −5.27 × 1019 | −4.42 × 1019 | −2.55 × 1019 | uncertain | uncertain |
SZO 200 °C HD | −5.85 × 1019 | −5.11 × 1019 | −3.58 × 1019 | uncertain | uncertain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Rebohle, L.; Ganss, F.; Dawidowski, W.; Guziewicz, E.; Koh, J.-H.; Helm, M.; Zhou, S.; Liu, Y.; Prucnal, S. P-Type ZnO Films Made by Atomic Layer Deposition and Ion Implantation. Nanomaterials 2024, 14, 1069. https://doi.org/10.3390/nano14131069
Zhang G, Rebohle L, Ganss F, Dawidowski W, Guziewicz E, Koh J-H, Helm M, Zhou S, Liu Y, Prucnal S. P-Type ZnO Films Made by Atomic Layer Deposition and Ion Implantation. Nanomaterials. 2024; 14(13):1069. https://doi.org/10.3390/nano14131069
Chicago/Turabian StyleZhang, Guoxiu, Lars Rebohle, Fabian Ganss, Wojciech Dawidowski, Elzbieta Guziewicz, Jung-Hyuk Koh, Manfred Helm, Shengqiang Zhou, Yufei Liu, and Slawomir Prucnal. 2024. "P-Type ZnO Films Made by Atomic Layer Deposition and Ion Implantation" Nanomaterials 14, no. 13: 1069. https://doi.org/10.3390/nano14131069
APA StyleZhang, G., Rebohle, L., Ganss, F., Dawidowski, W., Guziewicz, E., Koh, J. -H., Helm, M., Zhou, S., Liu, Y., & Prucnal, S. (2024). P-Type ZnO Films Made by Atomic Layer Deposition and Ion Implantation. Nanomaterials, 14(13), 1069. https://doi.org/10.3390/nano14131069