Hierarchical WS2-WO3 Nanohybrids with Flower-like p-n Heterostructures for Trimethylamine Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Synthesis of WS2/WO3 Nanohybrids with Flower-like Hierarchical Structures
2.3. Characterization
2.4. Fabrication and Measurement of Sensors
3. Results and Discussion
3.1. Structural and Morphological Characteristics
3.2. Gas Sensing Properties
3.3. Gas Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, S.; Guo, J.; Zhang, H.; Shao, X.; Zhang, D. A Room Temperature Trimethylamine Gas Sensor Based on Electrospinned Molybdenum Oxide Nanofibers/Ti3C2Tx MXene Heterojunction. Nanomaterials 2024, 14, 537. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.; Shimpi, N.G. Detection of trimethylamine (TMA) gas using mixed shape cobalt doped ZnO nanostructure. Mater. Chem. Phys. 2023, 305, 127972. [Google Scholar] [CrossRef]
- Meng, D.; Qiao, T.; Wang, G.; Shen, Y.; San, X.; Pan, Y.; Meng, F. NiO-functionalized In2O3 flower-like structures with enhanced trimethylamine gas sensing performance. Appl. Surf. Sci. 2022, 577, 151877. [Google Scholar] [CrossRef]
- Meng, D.; Qiao, T.; Wang, G.; San, X.; Meng, F. One-step synthesis of rGO/V2O5 flower-like microsphere composites with enhanced trimethylamine sensing properties. Mater. Lett. 2021, 299, 130023. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, D.; Wang, J.; Tang, M.; Xia, H.; Wang, Z. Ppb-level detection of trimethylamine as biomarker in exhaled gas based on MoO3/V2O5 hierarchical heterostructure. J. Alloys Compd. 2023, 968, 172104. [Google Scholar] [CrossRef]
- Chang, J.; Deng, Z.; Li, M.; Wang, S.; Mi, L.; Sun, Q.; Horprathum, M.; He, Y.; Kong, F.; Fang, X.; et al. Visible light boosting hydrophobic ZnO/(Sr0.6Bi0.305)2Bi2O7 chemiresistor toward ambient trimethylamine. Sens. Actuators B 2022, 352, 131076. [Google Scholar] [CrossRef]
- Yuan, Z.; Lei, Y.; Li, X.; Meng, F.; Gao, H. WO3 Nanosheets/FeCo2O4 Nanoparticles Heterostructures for Highly Sensitive and Selective Ammonia Sensors. IEEE Sens. J. 2021, 21, 26515–26525. [Google Scholar] [CrossRef]
- Li, J.; Zheng, M.; Yang, M.; Zhang, X.; Cheng, X.; Zhou, X.; Gao, S.; Xu, Y.; Huo, L. Three-in-one Ni doped porous SnO2 nanorods sensor: Controllable oxygen vacancies content, surface site activation and low power consumption for highly selective NO2 monitoring. Sens. Actuators B 2023, 382, 133550. [Google Scholar] [CrossRef]
- Ma, X.; Gao, R.; Zhang, T.; Sun, X.; Li, T.; Gao, S.; Zhang, X.; Xu, Y.; Cheng, X.; Huo, L. Mesoporous SnO2 nanospheres sensor for fast detection of HCHO and its application in safety detection of aquatic products. Sens. Actuators B 2023, 374, 132844. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, D.; Tang, M.; Zhang, H.; Wang, Z.; Jia, P.; Zhai, J. Amorphous Ag catalytic layer-SnO2 sensitive layer-graphite carbon nitride electron supply layer synergy-enhanced hydrogen gas sensor. Chem. Eng. J. 2024, 495, 153676. [Google Scholar] [CrossRef]
- Meng, X.; Gao, R.; Zheng, M.; Zhou, X.; Zhang, X.; Cheng, X.; Xu, Y.; Gao, S.; Huo, L. In-situ controllable preparation of ZIF-8-wrapped ZnO heterojunction nanorods array for ppb-level Cl2 detection operated at near room temperature. Chem. Eng. J. 2024, 493, 152631. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Q.; Fan, Y.; Sun, D.; Guan, H.; Chen, Y.; Ruan, S. MOF-derived ZnO nanocage decorated with Nd2O3 nanorods for high-performance triethylamine sensing. Sens. Actuators B 2023, 389, 133877. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, T.; Huo, L.; Gao, S.; Li, B.; Guo, C.; Yu, H.; Major, Z.; Zhang, X.; Cheng, X. Small size porous NiO/NiFe2O4 nanocubes derived from Ni-Fe bimetallic metal–organic frameworks for fast volatile organic compounds detection. Appl. Surf. Sci. 2023, 623, 157075. [Google Scholar] [CrossRef]
- Wang, D.; Mi, Q.; Zhang, H.; Li, G.; Zhang, D. Sensitive Xylene Gas Sensor Based on NiO-NiCo2O4 Hierarchical Spherical Structure Constructed with Nanorods. IEEE Sens. J. 2022, 22, 10346–10352. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, S.; Guo, J.; Zhang, D. UV-enhanced highly sensitive ammonia sensing properties based on 2DPI/In2O3 heterostructure at room temperature. J. Alloys Compd. 2022, 920, 165878. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Bi, Z.; Xu, R.; Chen, Y.; Zhou, J.; Ruan, S. An ultraviolet photodetector based on In2O3/β-Ga2O3 heterojunction. Mater. Sci. Semicond. Process. 2024, 181, 108648. [Google Scholar] [CrossRef]
- Wang, W.; Li, F.; Zhang, N.; Liu, C.; Zhou, J.; Liu, D.; Ruan, S. Self-assembled Co3O4@WO3 hollow microspheres with oxygen vacancy defects for fast and selective detection of toluene. Sens. Actuators B 2022, 351, 130931. [Google Scholar] [CrossRef]
- Liao, Q.; Sun, Q.; Cao, C.; Hu, J.; Wang, Y.; Li, S.; Xu, J.; Li, G.; Zhu, Y.; Wang, D. One-dimensional hierarchical core-shell metal oxide semiconductor@WO3 nanocomposites for Ppb-level acetone sensing. Sens. Actuators B 2024, 415, 136008. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, T.; Li, B.; Gao, R.; Zhang, X.; Cheng, X.; Huo, L.; Major, Z.; Xu, Y. Crosslinked WO3 nanonet for rapid detection of sulfur mustard gas simulant: Mechanism insights and sensing application. Sens. Actuators B 2023, 385, 133704. [Google Scholar] [CrossRef]
- Cao, C.; Yuan, Q.; Wang, C.; Deng, L.; Li, H.; Wang, D. Controlled synthesis of hierarchical tungsten oxide hydrates for efficient acetone detection. Appl. Surf. Sci. 2022, 604, 154651. [Google Scholar] [CrossRef]
- Ramanavičius, S.; Petrulevičienė, M.; Juodkazytė, J.; Grigucevičienė, A.; Ramanavičius, A. Selectivity of tungsten oxide synthesized by sol-gel method towards some volatile organic compounds and gaseous materials in a broad range of temperatures. Materials 2020, 13, 523. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Wang, T.; Zhang, G.; Zhang, X.; Huang, C.; Cheng, X.; Huo, L.; Cui, X.; Xu, Y. Synergy of Active Sites and Charge Transfer in Branched WO3/W18O49 Heterostructures for Enhanced NO2 Sensing. ACS Sens. 2024, 9, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Chen, F.; Liu, Y.; Zhang, H.; Jia, P.; Zhang, D. Pd-Doped WO3 Nanoplates for Hydrogen Sensing: Experimental Studies and Density Functional Theory Investigations. ACS Appl. Nano Mater. 2024, 7, 15298–15307. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Lin, F. A Photoelectrochemical Sensor for the Sensitive Detection of Cysteine Based on Cadmium Sulfide/Tungsten Disulfide Nanocomposites. Nanomaterials 2024, 14, 427. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, S.; Xin, S.; Sayin, S.; Yi, Z.; Li, Z.; Zaghloul, M. Layer-Dependent Sensing Performance of WS2-Based Gas Sensors. Nanomaterials 2024, 14, 235. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Zhang, X.; Yang, J.; Cheng, Y.; Hou, H.; Hussain, S.; Liu, J.; Qiao, G.; Liu, G. Facile fabrication of nanoflower-like WO3/WS2 heterojunction for highly sensitive NO2 detection at room temperature. J. Hazard. Mater. 2023, 443, 130316. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Yadav, B.C. 2D/2D Nanostructured System Based on WO3/WS2 for Acetone Sensor and Breath Analyzer. ACS Appl. Nano Mater. 2023, 6, 5493–5507. [Google Scholar] [CrossRef]
- Lykos, C.; Bairamis, F.; Efthymiou, C.; Konstantinou, I. Synthesis and Characterization of Composite WO3 Fibers/g-C3N4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media. Nanomaterials 2024, 14, 1045. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hu, M.; Wang, X.; Xu, X.; Jing, P.; Liu, B.; Gao, R.; Zhang, J. Constructing novel ternary heterostructure of CeP5O14/WP/WS2 to enhance catalytic activity for hydrogen evolution in a full pH range. Small Struct. 2023, 4, 2300026. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Li, Y.; Liu, Y.; Liang, X.; Liu, F.; Lu, G. Trace PdO and Co-MOF derivative modified SnO2 nanofibers for rapid triethylamine detection with little humidity disturbance. Sens. Actuators B 2024, 403, 135239. [Google Scholar] [CrossRef]
- Kim, S.J.; Koh, H.-J.; Ren, C.E.; Kwon, O.; Maleski, K.; Cho, S.-Y.; Anasori, B.; Kim, C.-K.; Choi, Y.-K.; Kim, J.; et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 2018, 12, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Zhao, Z.; Zhang, Z.; Tian, W.; Yang, C.; Jin, X.; Zhang, K. Room-temperature optoelectronic gas sensor based on core–shell g-C3N4@WO3 heterocomposites for efficient ammonia detection. Anal. Chem. 2023, 95, 2110–2118. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Xu, S.; Zhao, C.; Qiao, X.; Liu, H.; Zhao, Y.; Wei, J.; Zhu, Y. Bimetallic Au@Pt Nanocrystal Sensitization Mesoporous α-Fe2O3 Hollow Nanocubes for Highly Sensitive and Rapid Detection of Fish Freshness at Low Temperature. ACS Appl. Mater. Interfaces 2021, 13, 57597–57608. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lou, C.; Lei, G.; Lu, G.; Pan, H.; Liu, X.; Zhang, J. Atomic layer deposition of Rh/ZnO nanostructures for anti-humidity detection of trimethylamine. Sens. Actuators B 2022, 355, 131347. [Google Scholar] [CrossRef]
- Ravikumar, T.; Thirumalaisamy, L.; Madanagurusamy, S.; Kalainathan, S. Manganese doped two-dimensional zinc ferrite thin films as chemiresistive trimethylamine gas sensors. Phys. Chem. Chem. Phys. 2023, 25, 32216–32233. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, L.; Liu, Z.; Kang, Y.; Chen, Q.; Wang, W.; Liu, M.; Ye, B.-C.; Yu, F.; Li, Y. Visible-light-activated TiO2–NiFe2O4 heterojunction for detecting sub-ppm trimethylamine. J. Alloys Compd. 2022, 898, 162990. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Huang, C.; Qu, F.; Yao, D.; Guo, H.; Xu, H.; Jiang, C.; Yang, M. Mesoporous WO3 modified by Au nanoparticles for enhanced trimethylamine gas sensing properties. Dalton Trans. 2021, 50, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Si, J.; Wang, M.; Wang, G.; Shen, Y.; San, X.; Meng, F. One-step synthesis and the enhanced trimethylamine sensing properties of Co3O4/SnO2 flower-like structures. Vacuum 2020, 171, 108994. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, X.; Wang, W.; Sui, L.; Guo, C.; Xu, Y.; Cheng, X.; Major, Z.; Gao, S.; Huo, L. Ionic liquid ([C12mim][PF6])-assisted synthesis of TiO2/Ti2O(PO4)2 nanosheets and the chemoresistive gas sensing of trimethylamine. Microchim. Acta 2021, 188, 74. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, J.; Baihan, L.; Han, L.; Xu, Y. A microcube-like hierarchical heterostructure of α-Fe2O3@α-MoO3 for trimethylamine sensing. Dalton Trans. 2020, 49, 8114–8121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, B.; Lu, L.; Shao, J.; Du, Y.; Li, Y.; Chang, W. Enhanced triethylamine sensing characteristics of In-doped WO3 cubic nanoblocks at low operating temperature. Vacuum 2023, 218, 112640. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, N.; Xu, J.; Jin, Q.; San, X.; Wang, X. Co3O4/In2O3 pn heterostructures based gas sensor for efficient structure-driven trimethylamine detection. Ceram. Int. 2023, 49, 17354–17362. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, X.; Huang, L.; Zhang, Y.; Hu, Z.; Sun, C.; Yang, X.; Pan, G.; Cheng, Y. AuPd bimetallic functionalized monodisperse In2O3 porous spheres for ultrasensitive trimethylamine detection. Sens. Actuators B 2023, 381, 133355. [Google Scholar] [CrossRef]
- Xie, Q.; Ding, Y.; Wang, Q.; Song, P. Fabrication of 1D/2D In2O3 nanofibers/Ti3C2Tx MXene composites for high performance detection of trimethylamine at low temperature. Sens. Actuators B 2024, 405, 135338. [Google Scholar] [CrossRef]
- Barbosa, M.S.; Barbosa, D.N.O.; da Silva, R.A.; Orlandi, M.O. NO2-sensing proprieties of WS2/WO3 heterostructures obtained by hydrothermal treatment of tungsten oxide seed materials. Chem. Phys. Lett. 2023, 812, 140269. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Su, C.; Chen, X.; Li, B.; Jiang, W.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; et al. Hierarchical WS2–WO3 nanohybrids with P–N heterojunctions for NO2 detection. ACS Appl. Nano Mater. 2021, 4, 1626–1634. [Google Scholar] [CrossRef]
- Qin, F.; Gao, J.; Jiang, L.; Fan, J.; Sun, B.; Fan, Y.; Lv, H.; Shi, K. Biomorphic WO3@WS2 heterojunction composites for enhanced NO2 gas-sensing performance at room temperature. Appl. Surf. Sci. 2023, 615, 156338. [Google Scholar] [CrossRef]
Materials | Temperature (°C) | Concentration (ppm) | Response (Ra/Rg) | Res./Rec. Time (s) | LOD (ppm) | References |
---|---|---|---|---|---|---|
Au@Pt/α-Fe2O3 | 150 | 100 | 32 | 5/74 | 1 | [33] |
Rh/ZnO | 180 | 10 | 11.3 | 93/110 | 1 | [34] |
ZFMI | RT | 10 | 6.23 | 132/43 | 5 | [35] |
TiO2-NiFe2O4 | 307 | 10 | 12 | 50/45 | 0.1 | [36] |
Au-WO3 | 268 | 100 | 41.56 | 1/323 | 1 | [37] |
Co3O4/SnO2 | 170 | 5 | 9.3 | 19/29 | 1 | [38] |
TiO2/Ti2O(PO4)2 | 170 | 100 | 87.46 | 14.6/630 | 0.2 | [39] |
α-Fe2O3/α-MoO3 | 80 | 24 | 18.6 | 12/106 | 10 | [40] |
In-WO3 | 115 | 50 | 7.36 | 11/40 | 1 | [41] |
Co3O4/In2O3 | 200 | 10 | 11.67 | 25/68 | 1 | [42] |
WS2/WO3 | 200 | 10 | 19.45 | 12/31 | 0.1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, D.; Ran, S.; Zhang, L.; San, X.; Zhang, Y.; Zheng, Y.; Qi, J. Hierarchical WS2-WO3 Nanohybrids with Flower-like p-n Heterostructures for Trimethylamine Detection. Nanomaterials 2024, 14, 1322. https://doi.org/10.3390/nano14161322
Meng D, Ran S, Zhang L, San X, Zhang Y, Zheng Y, Qi J. Hierarchical WS2-WO3 Nanohybrids with Flower-like p-n Heterostructures for Trimethylamine Detection. Nanomaterials. 2024; 14(16):1322. https://doi.org/10.3390/nano14161322
Chicago/Turabian StyleMeng, Dan, Shunjiang Ran, Lei Zhang, Xiaoguang San, Yue Zhang, Yu Zheng, and Jian Qi. 2024. "Hierarchical WS2-WO3 Nanohybrids with Flower-like p-n Heterostructures for Trimethylamine Detection" Nanomaterials 14, no. 16: 1322. https://doi.org/10.3390/nano14161322
APA StyleMeng, D., Ran, S., Zhang, L., San, X., Zhang, Y., Zheng, Y., & Qi, J. (2024). Hierarchical WS2-WO3 Nanohybrids with Flower-like p-n Heterostructures for Trimethylamine Detection. Nanomaterials, 14(16), 1322. https://doi.org/10.3390/nano14161322