Simulations of Infrared Reflectivity and Transmission Phonon Spectra for Undoped and Doped GeC/Si (001)
Abstract
:1. Introduction
2. Theoretical Background
2.1. Model for Ideal Structure
2.1.1. Longitudinal-Optical-Phonon–Plasmon Coupling
2.2. Ideal Model for GeC/Si (001) Epilayers
2.3. Modified Model for GeC/Si (001) Epilayers
2.3.1. Reflectivity and Transmission
3. Numerical Simulations, Results, and Discussion
3.1. Reflectivity Spectra of Semi-Infinite zb GeC
3.2. Infrared Spectra of GeC/Si (001) Epifilms
3.2.1. Calculated Infrared Reflectance (Transmission) for Ideal GeC/Si (001)
- (A)
- Reflectance Spectra: Effect of Film Thickness
- (A1)
- Reflectance Spectra: Effects of Doping
- (B)
- Transmission Spectra: Effect of Film Thickness
- (B1)
- Transmission Spectra: Effects of Doping
3.2.2. LO-Phonon–Plasma Coupled Modes
3.2.3. Impact of γ, μ, and η on ωP
3.2.4. Effects of γ, η, and ωP on and
3.2.5. Berreman’s Effect
3.3. Modified Model for Infrared Spectra of Epifilms
3.3.1. Modified Model for zb GeC/Si (001): Effects of δ and δ2
3.3.2. Modified Model for GeC/Si (001): Effects of δ, δ2, and TL Thickness
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winkler, C. Mittheilungen über das Germanium. J. Prakt. Chem. 1887, 36, 177. [Google Scholar] [CrossRef]
- Winkler, H.C.A.; Lissner, A.; Lange, A.; Prokop, R.; Winkler, R. Clemens a Detailed Biography; Akademie Verlag: Berlin, Germany, 1954. [Google Scholar]
- Bardeen, J.; Brattain, W.H. The transistor, a semi-conductor triode. Phys. Rev. 1948, 74, 230. [Google Scholar] [CrossRef]
- Shockley, W. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst. Tech. J. 1949, 28, 435. [Google Scholar] [CrossRef]
- Bell Telephone Laboratories, Inc.; Western Electric Co., Inc. The Transistor: Selected Reference Material on Characteristics and Applications; Bell Telephone Laboratories, Inc.: New York, NY, USA, 1951. [Google Scholar]
- Wikipedia. History of the Transistor. 23 December 1947. Available online: https://en.wikipedia.org/wiki/History_of_the_transistor (accessed on 26 August 2024).
- Germanium for Electronic Devices. WK/The New York Times, 10 May 1953. Available online: https://www.nytimes.com/1953/05/10/archives/germanium-forelectronic-devices.html (accessed on 26 August 2024).
- Lark-Horovitz, K.; Brackett, F.S. The Present State of Physics. In Proceedings of the AAAS Symposium, New York, NY, USA, 30 December 1949; AAAS: Washington, DC, USA, 1950; p. 57. [Google Scholar]
- Teal, G.K.; Sparks, M.; Buehler, E. Single crystal germanium. Proc. IRE 1952, 40, 906–909. [Google Scholar] [CrossRef]
- Kilby, J. Miniaturized Electronic Circuits. US Patent 3,138:743, 23 June 1964. [Google Scholar]
- Noyce, R. Semiconductor Device-and-Lead Structure. US Patent 2, 981:877, 25 April 1961. [Google Scholar]
- Kahng, D.; Atalla, M.M. Silicon-silicon dioxide field induced surface devices. In Proceedings of the IRE-AIEEE Solid-State Device Research Conference, Pittsburgh, PA, USA, 1960. [Google Scholar]
- Smith, R.A. Semiconductors, 2nd ed.; Cambridge University Press: London, UK, 1979. [Google Scholar]
- Emsley, J. Nature’s Building Blocks, 1st ed.; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Haller, E. Ge-based devices from materials to devices. Mater. Sci. Semicond. Process. 2006, 9, 408. [Google Scholar] [CrossRef]
- International Technology Roadmap for Semiconductors. Available online: http://www.itrs.net/reports.html (accessed on 26 August 2024).
- Tiwari, S. Compound Semiconductor Device Physics; Academic Press: New York, NY, USA, 1991. [Google Scholar]
- Edgar, J.H.; Strite, S.; Akasaki, I.; Amano, H.; Wetzel, C. (Eds.) Properties, Processing and Applications of Gallium Nitride and Related Semiconductors; INSPEC: Manchester, UK, 1999. [Google Scholar]
- Nakamura, S.; Chichibu, S.F. (Eds.) Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes; Taylor & Francis: Abingdon-on-Thames, UK, 2000. [Google Scholar]
- Schubert, E.F. Light-Emitting Diodes; Cambridge University Press: London, UK, 2003. [Google Scholar]
- Zhou, S.; Liao, Z.; Sun, K.; Zhang, Z.; Qian, Y.; Liu, P.; Du, P.; Jiang, J.; Lv, Z.; Qi, S. High-Power AlGaN-Based Ultrathin Tunneling Junction Deep Ultraviolet Light-Emitting Diodes. Laser Photonics Rev. 2024, 18, 2300464. [Google Scholar] [CrossRef]
- Liu, Z.; Nong, M.; Lu, Y.; Cao, H.; Yuvaraja, S.; Xiao, N.; Alnakhli, Z.; Vázquez, R.; Li, X. Effect of the AlN strain compensation layer on InGaN quantum well red-light-emitting diodes beyond epitaxy. Opt. Lett. 2022, 47, 6230. [Google Scholar] [CrossRef] [PubMed]
- Rickman, A. The commercialization of silicon photonics. Nat. Photonics 2014, 8, 579–582. [Google Scholar] [CrossRef]
- Komljenovic, T.; Davenport, M.; Hulme, J.; Liu, A.Y.; Santis, C.T.; Spott, A.; Srinivasan, S.; Stanton, E.J.; Zhang, C.; Bowers, J.E. Heterogeneous Silicon Photonic Integrated Circuits. J. Light. Technol. 2016, 34, 20–35. [Google Scholar] [CrossRef]
- Dong, P.; Liu, X.; Chandrasekhar, S.; Buhl, L.L.; Aroca, R.; Chen, Y.K. Monolithic Silicon Photonic Integrated Circuits for Compact 100+Gb/s Coherent Optical Receivers and Transmitters. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 150–157. [Google Scholar] [CrossRef]
- Horikawa, T.; Shimura, D.; Okayama, H.; Jeong, S.-H.; Takahashi, H.; Ushida, J.; Sobu, Y.; Shiina, A.; Tokushima, M.; Kinoshita, K.; et al. A 300-mm Silicon Photonics Platform f, or Large-Scale Device Integration. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 8200415. [Google Scholar] [CrossRef]
- Kukushkin, S.; Osipov, A.; Redkov, A. SiC/Si as a New Platform for Growth of Wide-Bandgap Semiconductors. In Mechanics and Control of Solids and Structures, Advanced Structured Materials; Polyanskiy, V.A., Belyaev, A.K., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2022; Volume 164, Chapter 18; pp. 335–367. ISBN 978-3-030-93076-9. (eBook). [Google Scholar] [CrossRef]
- Nguyen, T.-K.; Yadav, S.; Truong, T.-A.; Han, M.; Barton, M.; Leitch, M.; Guzman, P.; Dinh, T.; Ashok, A.; Vu, H.; et al. Integrated, Transparent Silicon Carbide Electronics and Sensors for Radio Frequency Biomedical Therapy. ACS Nano 2022, 16, 10890–10903. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.A.; Nguyen, T.K.; Vadivelu, R.K.; Dinh, T.; Qamar, A.; Yadav, S.; Yamauchi, Y.; Rogers, J.A.; Nguyen, N.T.; Phan, H.P. Stretchable Bioelectronics: A Versatile Sacrificial Layer for Transfer Printing of Wide Bandgap Materials for Implantable and Stretchable Bioelectronics. Adv. Funct. Mater. 2020, 30, 2070287. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Phan, H.P.; Kamble, H.; Vadivelu, R.; Dinh, T.; Iacopi, A.; Walker, G.; Hold, L.; Nguyen, N.T.; Dao, D.V. Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications. ACS Appl. Mater. Interfaces 2017, 9, 41641–41647. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review. Photonics 2022, 9, 331. [Google Scholar] [CrossRef]
- Selim, R.; Hoofman, R.; Khoder, M.; Masood, A.; Littlejohns, C.; Geuzebroek, D.; Grootjans, R.; Drischel, T.; Torki, K. Silicon photonics open access foundry services review for emerging technology. In Proceedings of the SPIE, Glasgow, Scotland, UK, 28 September–1 October 2021; Emerging Applications in Silicon Photonics II, 118800C. Volume 11880. [Google Scholar] [CrossRef]
- Dan, L.; Citrin, D.S.; Hu, S. Compact high-performance polarization beam splitter based on a silicon photonic crystal heterojunction. Opt. Mater. 2020, 109, 110256. [Google Scholar]
- Maram, R.; Kaushal, S.; Azaña, J.; Chen, L.R. Recent Trends and Advances of Silicon-Based Integrated Microwave Photonics. Photonics 2019, 6, 13. [Google Scholar] [CrossRef]
- Chen, G.R.; Choi, J.W.; Sahin, E.; Ng, D.T.; Tan, D.H. On-chip 1 by 8 coarse wavelength division multiplexer and multi-wavelength source on ultra-silicon-rich nitride. Opt. Express 2019, 27, 23549–23557. [Google Scholar] [CrossRef]
- Rahim, A.; Spuesens, T.; Baets, R.; Bogaerts, W. Open-Access Silicon Photonics: Current Status and Emerging Initiatives. Proc. IEEE 2018, 106, 2313–2330. [Google Scholar] [CrossRef]
- Dai, D.X.; Wang, S.P. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications. Front. Optoelectron. 2016, 9, 450–465. [Google Scholar] [CrossRef]
- EUROPRACITCE-IC. Available online: http://www.europractice-ic.com (accessed on 26 August 2024).
- CORNERSTONE. Available online: https://www.cornerstone.sotonfab.co.uk (accessed on 26 August 2024).
- Littlejohns, C.G.; Rowe, D.J.; Du, H.; Li, K.; Zhang, W.; Cao, W.; Dominguez Bucio, T.; Yan, X.; Banakar, M.; Tran, D.; et al. CORNERSTONE’s Silicon Photonics Rapid Prototyping Platforms: Current Status and Future Outlook. Appl. Sci. 2020, 10, 8201. [Google Scholar] [CrossRef]
- GlobalFoundries. Available online: http://www.globalfoundries.com/ (accessed on 26 August 2024).
- Silicon Photonic IC Prototyping. Available online: https://www.imeciclink.com/en/asic-fabrication/si (accessed on 26 August 2024).
- Bennett, H.S.; Brederlow, R.; Costa, J.C.; Cottrell, P.E.; Huang, W.M.; Immorlica, A.A., Jr.; Mueller, J.-E.; Racanelli, M.; Shichijo, H.; Weitzel, C.E.; et al. Device and Technology Evolution for Si-Based RF Integrated Circuits. IEEE Trans. Electron Dev. 2005, 52, 1235. [Google Scholar] [CrossRef]
- Gutmann, R.J. Advanced Silicon IC Interconnect Technology and Design: Present Trends and RF Wireless Implications. IEEE Trans. Microw. Theory Tech. 1999, 47, 667. [Google Scholar] [CrossRef]
- Burghartz, J.N. Silicon RF technology—The two generic approaches. In Proceedings of the 27th European Solid-State Device Research Conference, Stuttgart, Germany, 22–24 September 1997; pp. 143–153. [Google Scholar]
- Razavi, B. CMOS technology characterization for analog and RF design. IEEE J. Sol. St. Circ. 1999, 34, 268–276. [Google Scholar] [CrossRef]
- Liang, X.; Wang, H.; Wang, C. Lattice thermal conductivity of transition metal carbides: Evidence of a strong electron-phonon interaction above room temperature. Acta Mater. 2021, 216, 117160. [Google Scholar] [CrossRef]
- Saleem, A.; Zhang, Y.; Gong, H.; Majeed, M.K. Fluoride doped SiC/Si3N4 composite as a high thermal conductive material with enhanced mechanical properties. Ceram. Int. 2019, 45, 21004–21010. [Google Scholar] [CrossRef]
- Yang, H.; Ma, Y.; Da, Y. Progress of structural and electronic properties of diamond: A mini review. Funct. Diam. 2021, 1, 150–159. [Google Scholar] [CrossRef]
- Yue, Y.; Gao, Y.; Hu, W.; Xu, B.; Wang, J.; Zhang, X.; Zhang, Q.; Wang, Y.; Ge, B.; Yang, Z.; et al. Hierarchically structured diamond composite with exceptional Toughness. Nature 2020, 582, 370. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, D.; Xu, B.; Hu, W.; Ma, Y.; Wang, Y.; Zhao, Z.; Wen, B.; He, J.; Liu, Z.; et al. Nano twinned diamond with unprecedented hardness and stability. Nature 2014, 510, 250–253. [Google Scholar] [CrossRef]
- Bauer, M.R.; Tolle, J.; Bungay, C.; Chizmeshya, A.V.G.; Smith, D.J.; Menéndez, J.; Kouvetakis, J. Tunable band structure in diamond–cubic tin–germanium alloys grown on silicon substrates. Solid State Commun. 2003, 127, 355–359. [Google Scholar] [CrossRef]
- Islam, M.S.; Mojumder, R.H.; Hassan, A.; Sohag, M.U.; Park, J. High-Efficiency Multi Quantum Well Blue LED Using 2D-SiC as an Active Material. In Proceedings of the 5th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT) Military Institute of Science and Technology (MIST), Dhaka, Bangladesh, 18–20 November 2021. [Google Scholar] [CrossRef]
- Ikoma, Y.; Endo, T.; Watanabe, F.; Motooka, T. Growth of Ultrathin Epitaxial 3C-SiC Films on Si(100) by Pulsed Supersonic Free Jets of CH3SiH3. Jpn. J. Appl. Phys. 1999, 38, L301. [Google Scholar] [CrossRef]
- Ohtani, R.; Ikoma, Y.; Motooka, T. Formation of Si/SiC heterostructures for silicon-based quantum devices using single CH3SiH3-gas source free jet. Mat. Res. Soc. Symp. Proc. 2004, 815, 118–123. [Google Scholar] [CrossRef]
- Ikoma, Y.; Endo, T.; Watanabe, F.; Motooka, T. Growth of Si/3C–SiC/Si(100) heterostructures by pulsed supersonic free jets. Appl. Phys. Lett. 1999, 75, 3977. [Google Scholar] [CrossRef]
- Okinaka, M.; Hamana, Y.; Tokuda, T.; Ohta, J.; Nunoshita, M. MBE growth mode and C incorporation of GeC epilayers on Si(0 0 1) substrates using an arc plasma gun as a novel C source. J. Cryst. Growth 2003, 249, 78–86. [Google Scholar] [CrossRef]
- Dey, T.; Reza, M.S.; Arbogast, A.W.; Holtz, M.; Droopad, R.; Bank, S.R.; Wistey, M.A. Molecular beam epitaxy of highly crystalline GeSnC using CBr4 at low temperatures. Appl. Phys. Lett. 2022, 121, 122104. [Google Scholar] [CrossRef]
- Dey, T.; Arbogast, A.W.; Meng, Q.; Reza, M.S.; Muhowski, A.J.; Cooper, J.P.; Ozdemir, E.; Naab, F.U.; Borrely, T.; Anderson, J.; et al. Influence of H on Sn incorporation in GeSnC alloys grown using molecular beam epitaxy. J. Appl. Phys. 2023, 134, 193102. [Google Scholar] [CrossRef]
- Talwar Devki, N.; Feng, Z.C.; Liu, C.W.; Tin, C.-C. Influence of surface roughness and interfacial layer on the infrared spectra of V-CVD grown 3C-SiC/Si (1 0 0) epilayers. Semicond. Sci. Technol. 2012, 27, 115019. [Google Scholar] [CrossRef]
- Yoshimura, S.; Sugimoto, S.; Takeuchi, T.; Murai, K.; Kiuchi, M. Low energy Si+, SiCH5+, or C+ beam injections to silicon substrates during chemical vapor deposition with dimethyl silane. Heliyon 2023, 9, e19002. [Google Scholar] [CrossRef]
- Li, X.; Jacobson, H.; Boulle, A.; Chaussende, D.; Henry, A. Double-Position-Boundaries Free 3C-SiC Epitaxial Layers Grown on On-Axis 4H-SiC. ECS J. Solid State Sci. Technol. 2014, 3, 75. [Google Scholar] [CrossRef]
- Xin, B.; Jia, R.X.; Hu, J.C.; Tsai, C.Y.; Lin, H.H.; Zhang, Y.M. A step-by-step experiment of 3C-SiC hetero-epitaxial growth on 4H-SiC by CVD. Appl. Surf. Sci. 2015, 357, 985–993. [Google Scholar] [CrossRef]
- Wu, J.; Qian, S.T.; Huo, T.G.; Zheng, J.X.; Zhang, P.L.; Dai, Y.; Geng, D.S. Effect of PyC Inner Coating on Preparation of 3C-SiC Coating on Quartz Glass by Chemical Vapor Reaction. Front. Mater. 2022, 9, 897900. [Google Scholar] [CrossRef]
- Kaloyeros, A.E.; Arkles, B. Silicon Carbide Thin Film Technologies: Recent Advances in Processing, Properties, and Applications—Part I Thermal and Plasma CVD. ECS J. Solid State Sci. Technol. 2023, 12, 103001. [Google Scholar] [CrossRef]
- Huguenin-Love, J.; Soukup, R.; Ianno, N.; Schrader, J.; Thompson, D.; Dalal, V. Optical and crystallographic analysis of thin films of GeC deposited using a unique hollow cathode sputtering technique. Mater. Sci. Semicond. 2006, 9, 759. [Google Scholar] [CrossRef]
- Hartmanna, J.M.; Abbadiea, A.; Vineta, M.; Claveliera, L.; Holligera, P.; Lafonda, D.; Semeria, M.N.; Gentile, P. Growth kinetics of Si on fullsheet, patterned and silicon-on-insulator substrates. J. Cryst. Growth 2003, 257, 19–30. [Google Scholar] [CrossRef]
- Kawanishi, S.; Daikoku, H.; Shibata, H.; Yoshikawa, T. Suppressing solvent compositional change during solution growth of SiC using SiC/C gradient crucible. J. Cryst. Growth 2021, 576, 126382. [Google Scholar] [CrossRef]
- Sannodo, N.; Osumi, A.; Kaminaga, K.; Maruyama, S.; Matsumoto, Y. Vapor-liquid-solid-like growth of high-quality and uniform 3C-SiC heteroepitaxial films on alpha-Al2O3 (0001) substrates. Cryst. Eng. Comm. 2021, 23, 1709–1717. [Google Scholar] [CrossRef]
- Kukushkin, S.A.; Osipov, A.V. Epitaxial silicon carbide on silicon. method of coordinated substitution of atoms (a review). Russ. J. Gen. Chem. 2022, 92, 584. [Google Scholar] [CrossRef]
- Gupta, N.; Veetil, B.P.; Xia, H.; Karuturi, S.K.; Conibeer, G.; Shrestha, S. Synthesis of nano-crystalline germanium carbide using radio frequency magnetron sputtering. Thin Solid Films 2015, 592, 162. [Google Scholar] [CrossRef]
- Booth, D.C.; Voss, K.J. The optical and structural properties of CVD germanium carbide. J. Phys. Colloq. 1981, 42, C4–C1033. [Google Scholar] [CrossRef]
- Feldman, D.W.; Parker, J.H., Jr.; Choyke, W.J.; Patrick, L. Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3C, 4H, 6H, 15R, and 21R. Phys. Rev. 1968, 173, 787. [Google Scholar] [CrossRef]
- Yoshida, M.; Onodera, A.; Ueno, M.; Takemura, K.; Shimomura, O. Pressure-induced phase transition in SiC. Phys. Rev. B 1993, 48, 10587. [Google Scholar] [CrossRef]
- Olego, D.; Cardona, M.; Vogl, P. Pressure dependence of the optical phonons and transverse effective charge in 3C-SiC. Phys. Rev. B 1982, 25, 3878. [Google Scholar] [CrossRef]
- Serrano, J.; Strempfer, J.; Cardona, M.; Schwoerer-Böhning, M.; Requardt, H.; Lorenzen, M.; Stojetz, B.; Pavone, P.; Choyke, W.J. Determination of the phonon dispersion of zinc blende (3C) silicon carbide by inelastic x-ray scattering. Appl. Phys. Lett. 2002, 80, 4360. [Google Scholar] [CrossRef]
- Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI, Semiconductors; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Available online: https://www.ioffe.ru/SVA/NSM/Semicond/Si/optic.html (accessed on 26 August 2024).
- Majid, A. A perspective on non-stoichiometry in silicon carbide (review article). Ceram. Int. 2018, 44, 1277. [Google Scholar] [CrossRef]
- Hao, A.; Yang, X.C.; Wang, X.M.; Zhu, Y.; Liu, X.; Liu, R.P. First-principles investigations on electronic, elastic, and optical properties of XC (X = Si, Ge, and Sn) under high pressure. J. Appl. Phys. 2010, 108, 063531. [Google Scholar] [CrossRef]
- Jankousky, M.; Garrity, E.M.; Stevanovic, V. Polymorphism of group-IV carbides: Structures, (meta)stability, electronic, and transport properties. Phys. Rev. Mat. 2023, 7, 053606. [Google Scholar] [CrossRef]
- Wang, C.Z.; Yu, R.C.; Krakauer, H. Pressure dependence of Born effective charges, dielectric constant, and lattice dynamics in SiC. Phys. Rev. B 1996, 53, 5430. [Google Scholar] [CrossRef]
- Souadkia, M.; Bennecer, B.; Kalarasse, F. Elastic, vibrational and thermodynamic properties of α-Sn based group IV semiconductors and GeC under pressure. J. Phys. Chem. Solids 2013, 74, 1615–1625. [Google Scholar] [CrossRef]
- Zhang, X.; Quan, S.; Ying, C.; Li, Z. Theoretical investigations on the structural, lattice dynamical and thermodynamic properties of XC (X = Si, Ge, Sn). Solid State Commun. 2011, 151, 1545–1549. [Google Scholar] [CrossRef]
- Pandey, R.; Rérat, M.; Darrigan, C.; Causà, M. A theoretical study of stability, electronic, and optical properties of GeC and SnC. J. Appl. Phys. 2000, 88, 6462. [Google Scholar] [CrossRef]
- Davydov, S.Y.; Lebedev, A. Dielectric and optical properties of the cubic SiC, GeC and SnC monocrystals: Model estimations. Phys. Solid State 2022, 64, 68. [Google Scholar] [CrossRef]
- Sahnoun, M.; Khenata, R.; Baltache, H.; Rérat, M.; Driz, M.; Bouhafs, B.; Abbar, B. First-principles calculations of optical properties of GeC, SnC and GeSn under hydrostatic pressure. Physica B 2005, 355, 392. [Google Scholar] [CrossRef]
- Sekkal, W.; Zaoui, A. Predictive study of thermodynamic properties of GeC. New J. Phys. 2022, 4, 9. [Google Scholar] [CrossRef]
- Abdulsattar, M.A.; Almaroof, S.M. Electronic and spectroscopic properties of GeC superlattice nanocrystals: A first-principles study using diamondoid structures. Superlattices Microstruct. 2015, 79, 63–71. [Google Scholar] [CrossRef]
- Saito, N.; Yamaguchi, T.; Nakaaki, I. Comparative study of properties between a-GeC:H and a-SiC:H films prepared by radio-frequency reactive sputtering in methane. J. Appl. Phys. 1995, 78, 3949–3954. [Google Scholar] [CrossRef]
- Bayu Aji, L.B.; Stavrou, E.; Wallace, J.B.; Boulle, A.; Debelle, A.; Kucheyev, S.O. Comparative study of radiation defect dynamics in 3C-SiC by X-ray diffraction, Raman scattering, and ion channeling. Appl. Phys. A 2019, 125, 1. [Google Scholar] [CrossRef]
- Boulle, A.; Debelle, A.; Wallace, J.B.; Aji, L.B.; Kucheyev, S.O. The amorphization of 3C-SiC irradiated at moderately elevated temperatures as revealed by X-ray diffraction. Acta Mater. 2017, 140, 250. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, W.; Pan, C.; Fadanelli, R.C.; Ai, W.; Chen, L.; Wang, T. Raman study of amorphization in nanocrystalline 3C–SiC irradiated with C.+ and He+ ions. J. Raman Spectrosc. 2019, 50, 1197. [Google Scholar] [CrossRef]
- Lindner, J.K.N.; Tsang, W.M.; Wong, S.P.; Xu, J.B.; Wilson, I.H. XTEM characterization of tungsten implanted SiC thin films on silicon for field emission devices. Thin Solid Films 2003, 427, 417–421. [Google Scholar] [CrossRef]
- Scuderi, V.; Calabretta, C.; Anzalone, R.; Mauceri, M.; La Via, F. Characterization of 4H- and 6H-Like Stacking Faults in Cross Section of 3C-SiC Epitaxial Layer by Room-Temperature µ-Photoluminescence and µ-Raman Analysis. Materials 2020, 13, 1837. [Google Scholar] [CrossRef]
- Talwar Devki, N. Spectroscopic Investigations for the Dynamical Properties of Defects in Bulk and Epitaxially Grown 3C-SiC/Si (100). In Handbook of Silicon Carbide Materials and Devices; Feng, Z.C., Ed.; CRC: Boca Raton, FL, USA, 2023; Chapter 3. [Google Scholar]
- Varshney, D.; Shriya, S.; Varshney, M.; Singh, N.; Khenata, R. Elastic and thermo-dynamical properties of cubic (3C) silicon carbide under high pressure and high temperature. J. Theor. Appl. Phys. 2015, 9, 221–249. [Google Scholar] [CrossRef]
- Sfuncia, G.; Nicotra, G.; Giannazzo, F.; Pécz, B.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. 2D graphitic-like gallium nitride and other structural selectivity in confinement at the graphene/SiC interface. Cryst. Eng. Comm. 2023, 25, 5810–5817. [Google Scholar] [CrossRef]
- Pela, R.R.; Hsiao, C.-L.; Hultman, L.; Birch, J.; Gueorguiev, G.K. Electronic and optical properties of core–shell InAlN nanorods: A comparative study via LDA, LDA-1/2, mBJ, HSE06, G0W0 and BSE methods. Phys. Chem. 2024, 26, 7504–7514. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.D.; Senaratne, C.L.; Kouvetakis, J.; Menéndez, J. Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys. Appl. Phys. Lett. 2014, 105, 142102. [Google Scholar]
- Ghetmiri, S.A.; Du, W.; Margetis, J.; Mosleh, A.; Cousar, L.; Conley, B.R.; Domulevicz, L.; Nazzal, A.; Sun, G.; Soref, R.A.; et al. Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence. Appl. Phys. Lett. 2014, 105, 6. [Google Scholar] [CrossRef]
- Wirths, S.; Geiger, R.; von den Driesch, N.; Mussler, G.; Stoica, T.; Mantl, S.; Ikonic, Z.; Luysberg, M.; Chiussi, S.; Hartmann, J.M.; et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics 2015, 9, 88. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.Z.; Liu, Z. Controlling electronic and optical properties of layered SiC and GeC sheets by strain engineering. Mater. Des. 2016, 108, 333–342. [Google Scholar] [CrossRef]
- Xua, Q.; Cai, W.; Li, W.; Sreeprasad, T.S.; He, Z.; Ong, W.-J.; Li, N. Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Mater. Today Energy 2018, 10, 222–240. [Google Scholar] [CrossRef]
- Schulte-Braucks, C.; Glass, S.; Hofmann, E.; Stange, D.; von den Driesch, N.; Hartmann, J.M.; Ikonic, Z.; Zhao, Q.T.; Buca, D.; Mantl, S. Process modules for GeSn nanoelectronics with high Sn-contents. Solid State Electron. 2017, 128, 54–59. [Google Scholar] [CrossRef]
- Holm, R.T.; Klein, P.H.; Nordquist, P.E.R. Infrared reflectance evaluation of chemically vapor deposited b-SiC films grown on Si substrates. J. Appl. Phys. 1986, 60, 1479. [Google Scholar] [CrossRef]
- Engelbrecht, J.A.A.; van Rooyen, I.J.; Henry, A.; Janzén, E.; Olivier, E.J. The origin of a peak in the reststrahlen region of SiC. Physica B 2012, 407, 1525–1528. [Google Scholar] [CrossRef]
- MacMillan, M.F.; Devaty, R.P.; Choyke, W.J.; Goldstein, D.R.; Spanier, J.E.; Kurtz, A.D. Infrared reflectance of thick p-type porous SiC layers. J. Appl. Phys. 1996, 80, 2412–2419. [Google Scholar] [CrossRef]
- Dong, L.; Sun, G.; Zheng, L.; Liu, X.; Zhang, F.; Yan, G.; Zhao, W.; Wang, L.; Li, X.; Wang, Z. Infrared reflectance study of 3C-SiC epilayers grown on silicon substrates. J. Phys. D Appl. Phys. 2012, 45, 245102. [Google Scholar] [CrossRef]
- Pascual, J.; Ben el Mekki, M.; Arnaud, G.; Camassel, J. Roughness Effects in the Infrared Reflectance of Thick 3C-SiC Films on Si Substrates; SPIE: Bellingham, WA, USA, 1995; Volume 2648, p. 12. [Google Scholar]
- Heavens, O.S. Optical Properties of Thin Solid Films; Butterworths Scientific Publications: London, UK, 1955. [Google Scholar]
- Piro, O.E. Optical properties, reflectance, and transmittance of anisotropic absorbing crystal plates. Phys. Rev. B 1987, 36, 3427. [Google Scholar] [CrossRef] [PubMed]
- Talwar, D.N.; Feng, Z.C. Understanding spectroscopic phonon-assisted defect features in CVD grown 3C-SiC/Si (100) by modeling and simulation. Comput. Mater. Sci. 2004, 30, 419. [Google Scholar] [CrossRef]
- Cadman, T.W.; Sadowski, D. Generalized equations for the calculation of absorptance, reflectance, and transmittance of a number of parallel surfaces. Appl. Opt. 1978, 17, 531. [Google Scholar] [CrossRef]
- Talwar, D.N.; Yang, T.R.; Feng, Z.C.; Becla, P. Infrared reflectance and transmission spectra in II-VI alloys and superlattices. Phys. Rev. B 2011, 84, 174203. [Google Scholar] [CrossRef]
- Shokhovets, S.; Goldhahn, R.; Cimalla, V.; Cheng, T.S.; Foxon, C.T. Reflectivity study of hexagonal GaN films grown on GaAs: Surface roughness, interface layer, and refractive index. J. Appl. Phys. 1998, 84, 1561. [Google Scholar] [CrossRef]
- Landron, O.; Feuerstein, M.J.; Rappaport, T.S. In Situ Microwave Reflection Coefficient Measurements for Smooth and Rough Exterior Wall Surfaces. In Proceedings of the IEEE Vehicular Technology Conference, Secaucus, NJ, USA, 18–20 May 1993; p. 77. [Google Scholar]
- Talwar Devki, N. Composition dependent phonon and thermodynamical characteristics of C-based XxY1-xC (X, Y≡ Si, Ge, Sn) alloys. Inorg. Inorg. 2024, 12, 100. [Google Scholar] [CrossRef]
- Inamoto, S.; Yamasaki, J.; Tamaki, H.; Tanaka, N. Atomic arrangement at the 3C-SiC/Si(001) interface revealed utilizing aberration-corrected transmission electron microscope. Philos. Mag. Lett. 2011, 91, 632. [Google Scholar] [CrossRef]
- Orlov, L.K.; Drozdov, Y.N.; Drozdov, M.N.; Pod’yacheva, O.A.; Vdovin, V.I. A comprehensive structural analysis of silicon carbide layers grown by vacuum epitaxy on silicon from hydrides and hydrocarbons. J. Struct. Chem. 2010, 51, S145. [Google Scholar] [CrossRef]
- Berreman, D.W. Resonant Reflectance Anomalies: Effect of Shapes of Surface Irregularities. Phys. Rev. B 1970, 1, 381. [Google Scholar] [CrossRef]
- Geurts, J. Raman spectroscopy from buried semiconductor interfaces: Structural and electronic properties. Phys. Status Solidi B 2015, 252, 19–29. [Google Scholar] [CrossRef]
- Ochoa, M.A.; Maslar, J.E.; Bennett, H.S. Extracting electron densities in n-type GaAs from Raman spectra: Comparisons with Hall measurements. J. Appl. Phys. 2020, 128, 075703. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Fu, C.; Pan, X.; Chen, X.; He, H.; Wang, W.; Zeng, Y.; Ye, Z. Raman-based measurement of carrier concentration in n-type ZnO thin films under resonant conditions. Phys. Lett. A 2020, 384, 126148. [Google Scholar] [CrossRef]
- Abstreiter, G.; Cardona, M.; Pinczuk, A. Light Scattering by Free Carrier Excitations in Semiconductors. In Light Scattering in Solids IV, Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 1984; pp. 5–150. [Google Scholar]
- Kukharskii, A.A. Plasmon-phonon coupling in GaAs. Sol. State Commun. 1973, 13, 1371. [Google Scholar] [CrossRef]
- Caughey, D.M.; Thomas, R.E. Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proc. IEEE 1967, 55, 2192–2193. [Google Scholar] [CrossRef]
- Paetzelt, H.; Böhm, G.; Arnold, T. Etching of silicon surfaces using atmospheric plasma jets. Plasma Sources Sci. Technol. 2015, 24, 025002. [Google Scholar] [CrossRef]
- Franta, D.; Ohlídal, I. Influence of lateral dimensions of the irregularities on the optical quantities of rough surfaces. J. Opt. A Pure Appl. Opt. 2006, 8, 763. [Google Scholar] [CrossRef]
- Ohlídal, I.; Vohánka, J.; Čermák, M.; Franta, D. Combination of spectroscopic ellipsometry and spectroscopic reflectometry with including light scattering in the optical characterization of randomly rough silicon surfaces covered by native oxide layers. Surf. Topogr. Metrol. Prop. 2019, 7, 045004. [Google Scholar] [CrossRef]
Optical Constants for GeC and Si Material Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
Γ | ||||||||
zb GeC (film) | 7.70 | 626 | 749 | 4.5 | 2.7 | Our | ||
7.29 | 626 | 748 | 0.20 | 2.7 | Ref. [80] Ref. [81] | |||
7.20 | 630 | 755 | Ref. [81] | |||||
7.10 | 682 | 812 | Ref. [86] | |||||
Si (substrate) | 11.70 | 520 | 520 | 3.42 | Refs. [77,78] |
Parameters | GeC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
η | 0.019 | 0.07 | 0.16 | 0.28 | 0.43 | 0.62 | 0.84 | 1.1 | 1.7 | 2.5 |
100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 1000 | 1200 | |
90 | 167 | 241 | 321 | 385 | 442 | 486 | 519 | 561 | 583 | |
750 | 756 | 768 | 787 | 813 | 851 | 901 | 964 | 1116 | 1290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talwar, D.N.; Haraldsen, J.T. Simulations of Infrared Reflectivity and Transmission Phonon Spectra for Undoped and Doped GeC/Si (001). Nanomaterials 2024, 14, 1439. https://doi.org/10.3390/nano14171439
Talwar DN, Haraldsen JT. Simulations of Infrared Reflectivity and Transmission Phonon Spectra for Undoped and Doped GeC/Si (001). Nanomaterials. 2024; 14(17):1439. https://doi.org/10.3390/nano14171439
Chicago/Turabian StyleTalwar, Devki N., and Jason T. Haraldsen. 2024. "Simulations of Infrared Reflectivity and Transmission Phonon Spectra for Undoped and Doped GeC/Si (001)" Nanomaterials 14, no. 17: 1439. https://doi.org/10.3390/nano14171439
APA StyleTalwar, D. N., & Haraldsen, J. T. (2024). Simulations of Infrared Reflectivity and Transmission Phonon Spectra for Undoped and Doped GeC/Si (001). Nanomaterials, 14(17), 1439. https://doi.org/10.3390/nano14171439