Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass–Ceramic Crystal Phases through Er3+ Ion Probe Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization Techniques
3. Results
3.1. Characterization of the Degree of Crystallinity by XRD
3.2. Calculation of J-O Parameters from Absorption Spectra
3.3. Fluorescence Spectroscopy
3.4. Comparison of the Glass Crystallization Process with the Entry of Er3+ into the Crystal Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atta, D.; Abdelghany, A.M.; Awad, W.M. Structural, optical properties, and laser spectroscopy of erbium-doped low-melting borate glasses. Ceram. Int. 2024, 50, 26528–26538. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Shen, M.; Zhu, S.; Wang, F. Glass–ceramic coatings on titanium alloys for high temperature oxidation protection: Oxidation kinetics and microstructure. Corros. Sci. 2013, 74, 178–186. [Google Scholar] [CrossRef]
- Feng, M.; Jiang, C.; Chen, M.; Zhu, S.; Wang, F. A general strategy towards improving the strength and thermal shock resistance of glass-ceramics through microstructure regulation. J. Mater. Sci. Technol. 2022, 120, 139–149. [Google Scholar] [CrossRef]
- Cheng, D.; Wei, C.; Huang, Y.; Zhang, Z.; Wang, D.; Liu, Z.; Newman, M.; Ma, T.; Chueh, Y.-H.; Zhang, X.; et al. Additive manufacturing of lithium aluminosilicate glass-ceramic/metal 3D electronic components via multiple material laser powder bed fusion. Addit. Manuf. 2022, 49, 102481. [Google Scholar] [CrossRef]
- Lin, R.; Deng, C.; Li, X.; Liu, Y.; Zhang, M.; Qin, C.; Yao, Q.; Wang, L.; Wu, C. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics 2019, 9, 6300–6313. [Google Scholar] [CrossRef]
- Milewska, K.; Maciejewski, M.; Synak, A.; Łapiński, M.; Mielewczyk-Gryń, A.; Sadowski, W.; Kościelska, B. From Structure to Luminescent Properties of B2O3-Bi2O3-SrF2 Glass and Glass-Ceramics Doped with Eu3+ Ions. Materials 2021, 14, 4490. [Google Scholar] [CrossRef]
- Yongsheng, D.; Jie, M.; Yu, S.; Xuefeng, Z.; Hongxia, Z.; Hua, C.; Shunli, O.; Li, B. Crystallization characteristics and corrosion properties of slag glass-ceramic prepared from blast furnace slag containing rare earth. J. Non-Cryst. Solids 2020, 532, 119880. [Google Scholar] [CrossRef]
- Freire, R.V.M.; Coelho, D.M.A.; Maciel, L.G.; Jesus, L.T.; Freire, R.O.; dos Anjos, J.V.; Junior, S.A. Luminescent Supramolecular Metallogels: Drug Loading and Eu(III) as Structural Probe. Chem. Eur. J. 2024, 30, 33. [Google Scholar] [CrossRef]
- Cicconi, M.R.; Deng, H.; Otsuka, T.; Telakula Mahesh, A.; Khansur, N.H.; Hayakawa, T.; de Ligny, D. Photoluminescence Study of Undoped and Eu-Doped Alkali-Niobate Aluminosilicate Glasses and Glass-Ceramics. Materials 2024, 17, 2283. [Google Scholar] [CrossRef]
- Yang, Y.; Li, D.; Qie, S.; Su, S.; Hu, M. Composite Eu@Cd-CP as a fluorescent probe for the detection of some food additives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 317, 124401. [Google Scholar] [CrossRef]
- Truong, N.M.P.; Sedano, M.; Durán, A.; Balda, R.; Pascual, M.J.; Klement, R. Er/Yb co-doped LiYF4 transparent oxyfluoride glass-ceramics with up-conversion optical properties. Ceram. Int. 2023, 49, 41201–41209. [Google Scholar] [CrossRef]
- Leontyev, A.V.; Nurtdinova, L.A.; Mityushkin, E.O.; Shmelev, A.G.; Zharkov, D.K.; Chuklanov, A.P.; Nurgazizov, N.I.; Nikiforov, V.G. Polarized luminescence in single upconversion NaYbF4:Er rods. New J. Chem. 2024, 48, 14029–14038. [Google Scholar] [CrossRef]
- Bungla, M.; Tyagi, M.; Ganguli, A.K.; Prasad, P.N. A NaBiF4:Gd/Tb nanoscintillator for high-resolution X-ray imaging. J. Mater. Chem. C 2024, 12, 9595–9605. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Zhou, S.; Yue, Y.; Qiu, J. Transparent glass-ceramics functionalized by dispersed crystals. Prog. Mater. Sci. 2018, 97, 38–96. [Google Scholar] [CrossRef]
- Dyussembekova, S.; Trusova, E.; Kichanov, S.; Podbolotov, K.; Kozlenko, D. A Study of PbF2 Nanoparticles Crystallization Mechanism in Mixed Oxyde-Fluoride Glasses. Ceramics 2023, 6, 1508–1516. [Google Scholar] [CrossRef]
- Kichanov, S.E.; Kozlenko, D.P.; Gorshkova, Y.E.; Rachkovskaya, G.E.; Zakharevich, G.B.; Savenko, B.N. Structural studies of nanoparticles doped with rare-earth ions in oxyfluoride lead-silicate glasses. J. Nanoparticle Res. 2018, 20, 54. [Google Scholar] [CrossRef]
- Luo, J.; Xiao, Z.; Zeng, L.; Xu, J.; Liu, J.; Li, G.; Li, C.; He, H.; Tang, J. Germanate-based oxyfluoride transparent glass-ceramic embedded with Tm3+:Ca2YbF7 nanocrystals for high-performance optical thermometer. Ceram. Int. 2023, 49, 4193–4203. [Google Scholar] [CrossRef]
- He, Z.; Gao, Y.; Qiu, J. Effect of concentration of Er3+ on up-conversion luminescence in NaYF4 embedded oxy-fluoride glass-ceramics under 1550 nm excitation. Ceram. Int. 2024, 50, 19302–19307. [Google Scholar] [CrossRef]
- Shinozaki, K.; Ishii, Y.; Sukenaga, S.; Ohara, K. Ultrafast Nanocrystallization of BaF2 in Oxyfluoride Glasses with Crystal-like Nanostructures: Implications for Upconversion Fiber Devices. ACS Appl. Nano Mater. 2022, 5, 4281–4292. [Google Scholar] [CrossRef]
- Hu, F.; Chen, W.; Jiang, Y.; Song, W.; Wei, R.; Guo, H. Tm3+-doped Na0.5-xYb0.5+xF2+2x self-crystallization glass ceramics: Microstructure and optical thermometry properties. J. Lumin. 2019, 214, 116558. [Google Scholar] [CrossRef]
- Babu, S.; Seshadri, M.; Balakrishna, A.; Reddy Prasad, V.; Ratnakaram, Y.C. Study of multicomponent fluoro-phosphate based glasses: Ho3+ as a luminescence center. Phys. B Condens. Matter 2015, 479, 26–34. [Google Scholar] [CrossRef]
- Enríquez, E.; Berges, C.; Fuertes, V.; Gallego, A.; Naranjo, J.A.; Herranz, G.; Fernández, J.F. Ceramic Injection Moulding of engineered glass-ceramics: Boosting the rare-earth free photoluminescence. Ceram. Int. 2020, 46, 9334–9341. [Google Scholar] [CrossRef]
- Marcondes, L.M.; Rodrigues, L.; Ramos da Cunha, C.; Gonçalves, R.R.; de Camargo, A.S.S.; Cassanjes, F.C.; Poirier, G.Y. Rare-earth ion doped niobium germanate glasses and glass-ceramics for optical device applications. J. Lumin. 2019, 213, 224–234. [Google Scholar] [CrossRef]
- Jain, P.; Aida, T.; Motosuke, M. Fluorescence Anisotropy as a Temperature-Sensing Molecular Probe Using Fluorescein. Micromachines 2021, 12, 1109. [Google Scholar] [CrossRef] [PubMed]
- Shánělová, J.; Honcová, P.; Málek, J.; Perejón, A.; Pérez-Maqueda, L.A. Direct comparison of surface crystal growth kinetics in chalcogenide glass measured by microscopy and DSC. J. Am. Ceram. Soc. 2023, 106, 6051–6061. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, Y.; Zhu, C.; Liu, S.; Liu, H.; Zhang, Y.; Yue, Y. Optical bandgap and luminescence in Er3+ doped oxyfluoro-germanate glass-ceramics. J. Non-Cryst. Solids 2021, 555, 120533. [Google Scholar] [CrossRef]
- Wu, J.; Kermani, M.; Cao, L.; Wang, B.; Dai, Z.; Fu, L.; Hu, C.; Grasso, S. Rapid crystallization of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics via ultra-fast high-temperature sintering (UHS). Int. J. Appl. Ceram. Technol. 2023, 20, 2125–2130. [Google Scholar] [CrossRef]
- Zaman, F.; Srisittipokakun, N.; Rooh, G.; Khattak, S.A.; Singkiburin, N.; Kim, H.J.; Sangwaranatee, N.; Kaewkhao, J. Investigation of Li2O–Gd2O3–MO–B2O3–Nd2O3 (MO=Ba/Bi) glasses for laser applications by Judd–Oflet (J–O) theory. J. Lumin. 2019, 215, 116639. [Google Scholar] [CrossRef]
- Liang, H.; Liu, S.; Zhang, P.; Lei, W.; Luo, Z.; Lu, A. Er3+/Yb3+ co-doped SiO2-Al2O3-CaO-CaF2 glass: Structure, J-O analysis and fluorescent properties. Mater. Sci. Eng. B 2021, 264, 114919. [Google Scholar] [CrossRef]
- Wang, F.; Tian, Y.; Jing, X.; Cai, M.; Zhang, J.; Xu, S. Effect of TeO2 addition on thermal stabilities and 2.7 μm emission properties of fluoroaluminate–tellurite glass. J. Quant. Spectrosc. Radiat. Transf. 2015, 165, 93–101. [Google Scholar] [CrossRef]
- Riahi, M.; Alizadeh, P.; Soltani, M. The impact of erbium ion on the crystallization process of yttrium fluorosilicate glass ceramics. J. Non-Cryst. Solids 2021, 553, 120499. [Google Scholar] [CrossRef]
- Zhao, D.; Qiao, X.; Fan, X.; Wang, M. Local vibration around rare earth ions in SiO2–PbF2 glass and glass ceramics using Eu3+ probe. Phys. B Condens. Matter 2007, 395, 10–15. [Google Scholar] [CrossRef]
- Keeling-Tucker, T.; Brennan, J.D. Fluorescent Probes as Reporters on the Local Structure and Dynamics in Sol–Gel-Derived Nanocomposite Materials. Chem. Mater. 2001, 13, 3331–3350. [Google Scholar] [CrossRef]
- Tuyen, V.P.; Sengthong, B.; Quang, V.X.; Van Do, P.; Van Tuyen, H.; Xuan Hung, L.; Thanh, N.T.; Nogami, M.; Hayakawa, T.; Huy, B.T. Dy3+ ions as optical probes for studying structure of boro-tellurite glasses. J. Lumin. 2016, 178, 27–33. [Google Scholar] [CrossRef]
S | Diffraction Peak S1 (2θ = 26°) | Amorphous Halo S2 | Crystallinity (%) | |
---|---|---|---|---|
Time (h) | ||||
0.5 | 87.1 | 294.7 | 29.6 | |
1.0 | 159.4 | 520.5 | 30.6 | |
1.5 | 152.1 | 493.2 | 30.8 | |
2.0 | 178.6 | 579.7 | 30.8 | |
2.5 | 198.7 | 626.6 | 31.7 | |
3.0 | 189.0 | 585.9 | 32.2 |
U(λ = 2,4,6) | 4S3/2 → 4I15/2 | 4F7/2 → 4I15/2 | 2H11/2 → 4I15/2 | 4F9/2 → 4I15/2 | 4I9/2 → 4I15/2 | 4I11/2 → 4I15/2 |
---|---|---|---|---|---|---|
U(2) | 0 | 0 | 0.7158 | 0 | 0 | 0.0276 |
U(4) | 0 | 0.1465 | 0.4138 | 0.5511 | 0.1587 | 0.0002 |
U(6) | 0.2225 | 0.6272 | 0.0927 | 0.4621 | 0.0072 | 0.3924 |
Sample | Ω2 (10−20 cm2) | Ω4 (10−20 cm2) | Ω6 (10−20 cm2) |
---|---|---|---|
0.5 h | 2.31 | 1.24 | 0.84 |
1.0 h | 1.42 | 0.94 | 0.75 |
1.5 h | 1.27 | 0.89 | 0.73 |
2.0 h | 1.11 | 0.84 | 0.72 |
2.5 h | 1.03 | 0.81 | 0.70 |
3.0 h | 0.93 | 0.78 | 0.70 |
0.5 h | 1.0 h | 1.5 h | 2.0 h | 2.5 h | 3.0 h | |
---|---|---|---|---|---|---|
Ratiolum | 4.98 | 5.02 | 5.01 | 4.96 | 4.99 | 5.02 |
Ratioobv | 2.77 | 3.76 | 4.01 | 4.41 | 4.55 | 4.91 |
Time | 0.5 h | 1.0 h | 1.5 h | 2.0 h | 2.5 h | 3.0 h |
---|---|---|---|---|---|---|
X | 30.7% | 75.4% | 82.9% | 90.9% | 94.9% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Cui, W.; Ren, S.; Yang, J.; Tian, J.; Xia, H.; Shen, J.; Ren, G. Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass–Ceramic Crystal Phases through Er3+ Ion Probe Characteristics. Nanomaterials 2024, 14, 1479. https://doi.org/10.3390/nano14181479
Chen Z, Cui W, Ren S, Yang J, Tian J, Xia H, Shen J, Ren G. Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass–Ceramic Crystal Phases through Er3+ Ion Probe Characteristics. Nanomaterials. 2024; 14(18):1479. https://doi.org/10.3390/nano14181479
Chicago/Turabian StyleChen, Zhixin, Wenzhe Cui, Sijun Ren, Ju Yang, Jiayu Tian, Haitao Xia, Jiajing Shen, and Guozhong Ren. 2024. "Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass–Ceramic Crystal Phases through Er3+ Ion Probe Characteristics" Nanomaterials 14, no. 18: 1479. https://doi.org/10.3390/nano14181479
APA StyleChen, Z., Cui, W., Ren, S., Yang, J., Tian, J., Xia, H., Shen, J., & Ren, G. (2024). Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass–Ceramic Crystal Phases through Er3+ Ion Probe Characteristics. Nanomaterials, 14(18), 1479. https://doi.org/10.3390/nano14181479