Numerical Modeling of Vortex-Based Superconducting Memory Cells: Dynamics and Geometrical Optimization
Abstract
:1. Introduction
2. Results
2.1. The Role of Spatially Asymmetric Track and Notch
2.2. Vortex Velocity in the Mesoscopic Limit: Edge Interaction and Non-Equilibrium Effects
2.3. AVRAM Cell Dynamics
2.4. Flux-Flow State
3. Discussion
3.1. Manipulation by Short Current Pulses
3.2. Stroboscopic Effect at Large Currents
3.3. Estimations for Nb-Based Cells
- (i)
- Edge effect in a mesoscopic superconductor. We consider vortex motion in a fluxonic quantum dot of dimensions comparable to the vortex size. This leads to the appearance of strong edge forces, acting on the vortex. The attractive edge–vortex force can be considered as due to the vortex–image antivortex interaction [49]. At small distances, the effective edge current density acting on the vortex approaches . According to Equation (1), this enables the maximum possible driving force, which is not achievable by the bias current.
- (ii)
- The spatial asymmetry of the cell. In a spatially symmetric superconductor, edge forces are equal in amplitude and opposite in direction at the two edges. Therefore, they will slow down the AV at the entrance and speed up at the exit. Although the net effect is nonzero because of nonlinear viscosity at high speed, it will be small due to the mutual cancellation of forces. Here, we consider a spatially asymmetric cell. The presence of a notch and a track reduces the image force at the AV entrance and, thus, removes edge force cancellation, increasing the net velocity.
- (iii)
- The guiding track. Write and erase operations are achieved via a track with a reduced superconducting order parameter. As seen from Figure 2c, a track with W∼ enables more than a three-fold increase in the velocity both due to the reduction of viscosity caused by nonequilibrium core expansion and by the enhancement of flux-flow nonlinearity due to the reduction of and thus enhancement of in the track. The maximum AV velocity is determined by the track depth, i.e., by the suppression of the order parameter. Here, we presented data for a modest track depth, . Any further reduction of would lead to faster vortex motion. However, at , the track would become a Josephson junction, consequently turning the Abrikosov vortex into a Josephson vortex. Although the Josephson vortex can propagate at the speed of light (in the transmission line), it is difficult to pin and store [22]. Furthermore, in this case, the cell would become equivalent to the RF-SQUID and would need a significant trap-hole inductance for storing , causing the same problem with miniaturization as for RSFQ memory.
3.4. Perspectives of AVRAM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Numerical Procedure
References
- Bardeen, J.; Brattain, W.H. The transistor, a semi-conductor triode. Phys. Rev. 1948, 74, 230. [Google Scholar] [CrossRef]
- Buck, D.A. The cryotron-a superconductive computer component. Proc. IRE 1956, 44, 482–493. [Google Scholar] [CrossRef]
- De Liso, N.; Filatrella, G.; Gagliardi, D.; Napoli, C. Cold numbers: Superconducting supercomputers and presumptive anomaly. Ind. Corp. Chang. 2020, 29, 485–505. [Google Scholar] [CrossRef]
- Nakagawa, H.; Kurosawa, I.; Aoyagi, M.; Kosaka, S.; Hamazaki, Y.; Okada, Y.; Takada, S. A 4-bit Josephson computer ETL-JC1. IEEE Trans. Appl. Supercond. 1991, 1, 37–47. [Google Scholar] [CrossRef]
- Englander, I.; Wong, W. The Architecture of Computer Hardware, Systems Software, and Networking: An Information Technology Approach; John Wiley & Sons: New York, NY, USA, 2021. [Google Scholar]
- Reinsel, D.; Gantz, J.; Rydning, J. The Digitization of the World from Edge to Core; International Data Corporation: Framingham, MA, USA, 2018; Volume 16, pp. 1–28. [Google Scholar]
- Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 2018, 561, 163–166. [Google Scholar] [CrossRef]
- Li, W.; Gong, X.; Yu, Z.; Ma, L.; Sun, W.; Gao, S.; Köroğlu, Ç.; Wang, W.; Liu, L.; Li, T.; et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 2023, 613, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.E. Cramming more components onto integrated circuits. Proc. IEEE 1998, 86, 82–85. [Google Scholar] [CrossRef]
- De Liso, N.; Arima, S.; Troisi, A.; Filatrella, G. Semiconductors’ miniaturization through time: From Moore’s law to Eroom’s Law? In Proceedings of the IEEE Nanotechnology Materials and Devices Conference, Paestum, Italy, 22–25 October 2023; pp. 621–625. [Google Scholar]
- Holmes, D.S.; Ripple, A.L.; Manheimer, M.A. Energy-efficient superconducting computing—Power budgets and requirements. IEEE Trans. Appl. Supercond. 2013, 23, 1701610. [Google Scholar] [CrossRef]
- Tolpygo, S.K. Superconductor digital electronics: Scalability and energy efficiency issues. Low Temp. Phys. 2016, 42, 361–379. [Google Scholar] [CrossRef]
- Ortlepp, T.; Van Duzer, T. Access time and power dissipation of a model 256-bit single flux quantum RAM. IEEE Trans. Appl. Supercond. 2014, 24, 1300307. [Google Scholar] [CrossRef]
- Semenov, V.K.; Polyakov, Y.A.; Tolpygo, S.K. Very large scale integration of Josephson-junction-based superconductor random access memories. IEEE Trans. Appl. Supercond. 2019, 29, 1302809. [Google Scholar] [CrossRef]
- Goldobin, E.; Sickinger, H.; Weides, M.; Ruppelt, N.; Kohlstedt, H.; Kleiner, R.; Koelle, D. Memory cell based on a φ-Josephson junction. Appl. Phys. Lett. 2013, 102, 242602. [Google Scholar] [CrossRef]
- Baek, B.; Rippard, W.H.; Benz, S.P.; Russek, S.E.; Dresselhaus, P.D. Hybrid superconducting-magnetic memory device using competing order parameters. Nat. Commun. 2014, 5, 3888. [Google Scholar] [CrossRef]
- Nevirkovets, I.P.; Mukhanov, O.A. Memory cell for high-density arrays based on a multiterminal superconducting-ferromagnetic device. Phys. Rev. Appl. 2018, 10, 034013. [Google Scholar] [CrossRef]
- Madden, A.E.; Willard, J.C.; Loloee, R.; Birge, N.O. Phase controllable Josephson junctions for cryogenic memory. Supercond. Sci. Technol. 2019, 32, 015001. [Google Scholar] [CrossRef]
- Bakurskiy, S.V.; Klenov, N.V.; Soloviev, I.I.; Kupriyanov, M.Y.; Golubov, A.A. Superconducting phase domains for memory applications. Appl. Phys. Lett. 2016, 108, 042602. [Google Scholar] [CrossRef]
- Ryazanov, V.V.; Bolginov, V.V.; Sobanin, D.S.; Vernik, I.V.; Tolpygo, S.K.; Kadin, A.M.; Mukhanov, O.A. Magnetic josephson junction technology for digital and memory applications. Phys. Procedia 2012, 36, 35–41. [Google Scholar] [CrossRef]
- Ligato, N.; Strambini, E.; Paolucci, F.; Giazotto, F. Preliminary demonstration of a persistent Josephson phase-slip memory cell with topological protection. Nat. Commun. 2021, 12, 5200. [Google Scholar] [CrossRef]
- Hovhannisyan, R.A.; Golod, T.; Krasnov, V.M. Controllable Manipulation of Semifluxon States in Phase-Shifted Josephson Junctions. Phys. Rev. Lett. 2024, 132, 227001. [Google Scholar] [CrossRef]
- Golod, T.; Iovan, A.; Krasnov, V.M. Single Abrikosov vortices as quantized information bits. Nature Commun. 2015, 6, 8628. [Google Scholar] [CrossRef]
- Golod, T.; Morlet-Decarnin, L.; Krasnov, V.M. Word and bit line operation of a 1 × 1 μm2 superconducting vortex-based memory. Nature Commun. 2023, 14, 4926. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Hossain, M.S.; Srinivasa, S.R.; Aziz, A. Cryogenic memory technologies. Nat. Electron. 2023, 6, 1–14. [Google Scholar] [CrossRef]
- Foltyn, M.; Norowski, K.; Savin, A.; Zgirski, M. Quantum thermodynamics with a single superconducting vortex. Sci. Adv. 2024, 10, eado4032. [Google Scholar] [CrossRef]
- Sok, J.; Finnemore, D.K. Thermal depinning of a single superconducting vortex in Nb. Phys. Rev. B 1994, 50, 12770. [Google Scholar] [CrossRef]
- Golod, T.; Rydh, A.; Krasnov, V.M. Detection of the phase shift from a single Abrikosov vortex. Phys. Rev. Lett. 2010, 104, 227003. [Google Scholar] [CrossRef] [PubMed]
- Polshyn, H.; Naibert, T.R.; Budakian, R. Manipulating multivortex states in superconducting structures. Nano Lett. 2019, 19, 5476. [Google Scholar] [CrossRef]
- Keren, I.; Gutfreund, A.; Noah, A.; Fridman, N.; Di Bernardo, A.; Steinberg, H.; Anahory, Y. Chip-integrated vortex manipulation. Nano Lett. 2023, 23, 4669–4674. [Google Scholar] [CrossRef]
- Veshchunov, I.S.; Magrini, W.; Mironov, S.V.; Godin, A.G.; Trebbia, J.B.; Buzdin, A.I.; Tamarat, P.; Lounis, B. Optical manipulation of single flux quanta. Nat. Commun. 2016, 7, 12801. [Google Scholar] [CrossRef]
- Bezryadin, A.; Buzdin, A.; Pannetier, B. Phase diagram of multiply connected superconductors: A thin-wire loop and a thin film with a circular hole. Phys. Rev. B 1995, 51, 3718. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V.; Dubonos, S.V.; Lok, J.G.S.; Maan, J.C.; Filippov, E.A.; Peeters, F.M. Phase transitions in individual sub-micrometre superconductors. Nature 1997, 390, 259. [Google Scholar] [CrossRef]
- Berdiyorov, G.R.; Baelus, B.J.; Milosevic, M.V.; Peeters, F.M. Stability and transition between vortex configurations in square mesoscopic samples with antidots. Phys. Rev. B 2003, 68, 174521. [Google Scholar] [CrossRef]
- Chibotaru, L.F.; Ceulemans, A.; Morelle, M.; Teniers, G.; Carballeira, C.; Moshchalkov, V.V. Ginzburg–Landau description of confinement and quantization effects in mesoscopic superconductors. J. Math. Phys. 2005, 46, 095108. [Google Scholar] [CrossRef]
- Milosevic, M.V.; Kanda, A.; Hatsumi, S.; Peeters, F.M.; Ootuka, Y. Local current injection into mesoscopic superconductors for the manipulation of quantum states. Phys. Rev. Lett. 2009, 103, 217003. [Google Scholar] [CrossRef]
- Bishop-Van Horn, L. pyTDGL: Time-dependent Ginzburg-Landau in Python. Comput. Phys. Commun. 2023, 291, 108799. [Google Scholar] [CrossRef]
- Clem, J.R. Effect of nearby Pearl vortices upon the Ic versus B characteristics of planar Josephson junctions in thin and narrow superconducting strips. Phys. Rev. B 2011, 84, 134502. [Google Scholar] [CrossRef]
- Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. Kinematic vortex-antivortex lines in strongly driven superconducting stripes. Phys. Rev. B 2009, 79, 184506. [Google Scholar] [CrossRef]
- Kapra, A.V.; Misko, V.R.; Vodolazov, D.Y.; Peeters, F.M. The guidance of vortex–antivortex pairs by in-plane magnetic dipoles in a superconducting finite-size film. Supercond. Sci. Technol. 2011, 24, 024014. [Google Scholar] [CrossRef]
- De Oliveira, I.G. Magnetic Flux Penetration in a Mesoscopic Superconductor with a Slit. J. Supercond. Nov. Magn. 2014, 27, 1143–1152. [Google Scholar] [CrossRef]
- Reichhardt, C.; Reichhardt, C.J.O. Vortex guidance and transport in channeled pinning arrays. Low Temp. Phys. 2020, 46, 309–315. [Google Scholar] [CrossRef]
- Likharev, K.K. Superconductor digital electronics. Phys. C Supercond. Its Appl. 2012, 482, 6–18. [Google Scholar] [CrossRef]
- Vodolazov, D.Y.; Peeters, F.M. Rearrangement of the vortex lattice due to instabilities of vortex flow. Phys. Rev. B 2007, 76, 014521. [Google Scholar] [CrossRef]
- Grimaldi, G.; Leo, A.; Sabatino, P.; Carapella, G.; Nigro, A.; Pace, S.; Moshchalkov, V.V.; Silhanek, A.V. Speed limit to the Abrikosov lattice in mesoscopic superconductors. Phys. Rev. B 2015, 92, 024513. [Google Scholar] [CrossRef]
- Jelić, Ž.L.; Milošević, M.V.; Silhanek, A.V. Velocimetry of superconducting vortices based on stroboscopic resonances. Sci. Rep. 2016, 6, 35687. [Google Scholar] [CrossRef]
- Dobrovolskiy, O.V. Fast Dynamics of Vortices in Superconductors. In Encyclopedia of Condensed Matter Physics, 2nd ed.; Academic Press: Cambridge, MA, USA, 2023; Chapter 9; ISBN 978-0-323-91408-6. [Google Scholar]
- Bardeen, J.; Stephen, M.J. Theory of the motion of vortices in superconductors. Phys. Rev. 1965, 140, A1197–A1207. [Google Scholar] [CrossRef]
- Golod, T.; Pagliero, A.; Krasnov, V.M. Two mechanisms of Josephson phase shift generation by an Abrikosov vortex. Phys. Rev. B 2019, 100, 174511. [Google Scholar] [CrossRef]
- Bezuglyj, A.I.; Shklovskij, V.A. Effect of self-heating on flux flow instability in a superconductor near Tc. Phys. C Supercond. 1992, 202, 234–242. [Google Scholar] [CrossRef]
- Korneeva, Y.P.; Vodolazov, D.Y.; Semenov, A.V.; Florya, I.N.; Simonov, N.; Baeva, E.; Korneev, A.A.; Goltsman, G.N.; Klapwijk, T.M. Optical single-photon detection in micrometer-scale NbN bridges. Phys. Rev. Appl. 2018, 9, 064037. [Google Scholar] [CrossRef]
- Larkin, A.I.; Ovchinnikov, Y.N. Nonlinear conductivity of superconductors in the mixed state. J. Exp. Theor. Phys. 1975, 41, 960. [Google Scholar]
- Sivakov, A.G.; Glukhov, A.M.; Omelyanchouk, A.N.; Koval, Y.; Müller, P.; Ustinov, A.V. Josephson behavior of phase-slip lines in wide superconducting strips. Phys. Rev. Lett. 2003, 91, 267001. [Google Scholar] [CrossRef]
- Embon, L.; Anahory, Y.; Jelić, Ž.L.; Lachman, E.O.; Myasoedov, Y.; Huber, M.E.; Mikitik, G.P.; Silhanek, A.V.; Milošević, M.V.; Gurevich, A.; et al. Imaging of super-fast dynamics and flow instabilities of superconducting vortices. Nature Commun. 2017, 8, 85. [Google Scholar] [CrossRef]
- Zeinali, A.; Golod, T.; Krasnov, V.M. Surface superconductivity as the primary cause of broadening of superconducting transition in Nb films at high magnetic fields. Phys. Rev. B 2016, 94, 214506. [Google Scholar] [CrossRef]
- Lu, A.; Peng, X.; Li, W.; Jiang, H.; Yu, S. NeuroSim Simulator for Compute-in-Memory Hardware Accelerator: Validation and Benchmark. Front. Artif. Intell. 2021, 4, 1. [Google Scholar] [CrossRef]
- Du, Q.; Nicolaides, R.A.; Wu, X. Analysis and convergence of a covolume approximation of the Ginzburg–Landau model of superconductivity. SIAM J. Numer. Anal. 1998, 35, 1049–1072. [Google Scholar] [CrossRef]
- Malomed, B.A.; Weber, A. Dynamics of a superconductive filament in the constant-voltage regime. Phys. Rev. B 1991, 44, 875. [Google Scholar] [CrossRef]
- Baranov, V.V.; Balanov, A.G.; Kabanov, V.V. Current-voltage characteristic of narrow superconducting wires: Bifurcation phenomena. Phys. Rev. B 2011, 84, 094527. [Google Scholar] [CrossRef]
- Yerin, Y.S.; Fenchenko, V.N.; Il’ichev, E.V. Phase diagram of the resistive state of a narrow superconducting channel in the voltage-driven regime. Low Temp. Phys. 2013, 39, 125. [Google Scholar] [CrossRef]
- Kennes, D.M.; Millis, A.J. Electromagnetic response during quench dynamics to the superconducting state: Time-dependent Ginzburg-Landau analysis. Phys. Rev. B 2017, 96, 064507. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skog, A.; Hovhannisyan, R.A.; Krasnov, V.M. Numerical Modeling of Vortex-Based Superconducting Memory Cells: Dynamics and Geometrical Optimization. Nanomaterials 2024, 14, 1634. https://doi.org/10.3390/nano14201634
Skog A, Hovhannisyan RA, Krasnov VM. Numerical Modeling of Vortex-Based Superconducting Memory Cells: Dynamics and Geometrical Optimization. Nanomaterials. 2024; 14(20):1634. https://doi.org/10.3390/nano14201634
Chicago/Turabian StyleSkog, Aiste, Razmik A. Hovhannisyan, and Vladimir M. Krasnov. 2024. "Numerical Modeling of Vortex-Based Superconducting Memory Cells: Dynamics and Geometrical Optimization" Nanomaterials 14, no. 20: 1634. https://doi.org/10.3390/nano14201634
APA StyleSkog, A., Hovhannisyan, R. A., & Krasnov, V. M. (2024). Numerical Modeling of Vortex-Based Superconducting Memory Cells: Dynamics and Geometrical Optimization. Nanomaterials, 14(20), 1634. https://doi.org/10.3390/nano14201634