Heterogeneous Catalytic Ozonation of Pharmaceuticals: Optimization of the Process by Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis of CeTiOx Nanoparticles
2.3. Characterization of the Nanoparticles
2.4. Response Surface Methodology
2.5. Batch Experiments with Nanoparticles
2.6. Ozone Degradation Studies
2.7. Analytical Methods
3. Results and Discussion
3.1. Characterization of the Nanoparticles
3.2. Effect of Matrix on Ozone Depletion
3.3. Surface Response Methodology for Pharmaceutical Degradation
3.4. Degradation of Pharmaceuticals
3.5. Catalyst-Pharmaceutical Interactions: Challenges and Future Directions
4. Conclusions
- CeTiOx was successfully synthesized using the sol–gel method. This catalyst, prepared with a 1% molar ratio of Ce/Ti, exhibited promising structural properties, though its catalytic efficacy in this study was limited.
- Response surface methodology (RSM) proved to be an effective tool for optimizing the removal of pharmaceuticals by identifying the most significant variables influencing the ozonation process. The transferred ozone dose (TOD) was the most impactful among the tested variables.
- Ozone decomposition kinetics were found to vary significantly based on organic load. In low organic load conditions (with bicarbonate present), the decomposition of aqueous ozone followed second-order kinetics. However, under high organic load, ozone was consumed too rapidly for second-order kinetics to apply, pointing to instantaneous ozone demand.
- The short contact time of aqueous ozone with the nanoparticles (NPs) resulted in limited catalytic activity. In this study, catalytic ozonation did not provide a significant advantage over ozonation alone, mainly due to the rapid depletion of aqueous ozone in the matrix. The catalytic effect was negligible because ozone had insufficient time to interact with the catalyst surface, with only around 20% of the ozone dose being converted into hydroxyl radicals (●OH).
- The rapid depletion of aqueous ozone in the matrix rendered Rct calculations infeasible. These findings suggest that catalytic ozonation may not be necessary or effective in systems where ozone reacts quickly with the matrix and that direct ozonation may suffice in such cases. However, catalytic ozonation could benefit systems where ozone persists longer, allowing for more substantial interaction with the catalyst.
- The efficacy of catalytic ozonation can be hindered by aqueous ozone due to the saturation of catalyst surface sites with water molecules. Gaseous ozone applications, in contrast, may enhance catalytic efficiency by promoting better ozone–catalyst interaction.
- While batch processes are valuable for preliminary studies and offer controlled environments for investigating catalyst behavior, they do not always replicate the conditions of large-scale, continuous-flow systems typically used in wastewater treatment plants
- Finally, a detailed understanding of the ozone-catalyst interaction mechanism in heterogeneous catalysis is essential for optimizing catalytic processes. This knowledge enables selecting and designing more effective catalysts, particularly in systems where maximizing ozone conversion into hydroxyl radicals is crucial for degradation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-Rodríguez, A.; Matamoros, V.; Fontàs, C.; Salvadó, V. The Ability of Biologically Based Wastewater Treatment Systems to Remove Emerging Organic Contaminants—A Review. Environ. Sci. Pollut. Res. 2014, 21, 11708–11728. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Schoups, G.; Van De Giesen, N. Organic Pollution of Rivers: Combined Threats of Urbanization, Livestock Farming and Global Climate Change. Sci. Rep. 2017, 7, 43289. [Google Scholar] [CrossRef] [PubMed]
- Benson, R.; Conerly, O.D.; Sander, W.; Batt, A.L.; Boone, J.S.; Furlong, E.T.; Glassmeyer, S.T.; Kolpin, D.W.; Mash, H.E.; Schenck, K.M.; et al. Human Health Screening and Public Health Significance of Contaminants of Emerging Concern Detected in Public Water Supplies. Sci. Total Environ. 2017, 579, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- EU Directive 2000/60/EC of the European Parliament and the Council—Establishing a Framework for Community Action in the Field of Water Policy; European Environmental Agency: Copenhagen, Denmark, 2000.
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of Pharmaceuticals during Wastewater Treatment and Environmental Risk Assessment Using Hazard Indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef]
- Falås, P.; Andersen, H.R.; Ledin, A.; Jansen, J.L.C. Occurrence and Reduction of Pharmaceuticals in the Water Phase at Swedish Wastewater Treatment Plants. Water Sci. Technol. 2012, 66, 783–791. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of Drinking Water: Part I. Oxidation Kinetics and Product Formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- Von Gunten, U. Oxidation Processes in Water Treatment: Are We on Track? Environ. Sci. Technol. 2018, 52, 5062–5075. [Google Scholar] [CrossRef]
- Antoniou, M.G.; Hey, G.; Vega, S.R.; Spiliotopoulou, A.; Fick, J.; Tysklind, M.; Jansen, J.L.C.; Andersen, H.R. Required Ozone Doses for Removing Pharmaceuticals from Wastewater Effluents. Sci. Total Environ. 2013, 456, 42–49. [Google Scholar] [CrossRef]
- Iakovides, I.C.; Michael-Kordatou, I.; Moreira, N.F.F.; Ribeiro, A.R.; Fernandes, T.; Pereira, M.F.R.; Nunes, O.C.; Manaia, C.M.; Silva, A.M.T.; Fatta-Kassinos, D. Continuous Ozonation of Urban Wastewater: Removal of Antibiotics, Antibiotic-Resistant Escherichia Coli and Antibiotic Resistance Genes and Phytotoxicity. Water Res. 2019, 159, 333–347. [Google Scholar] [CrossRef]
- Rodríguez, A.; Rosal, R.; Perdigón-Melón, J.A.; Mezcua, M.; Agüera, A.; Hernando, M.D.; Letón, P.; Fernández-Alba, A.R.; García-Calvo, E. Ozone-Based Technologies in Water and Wastewater Treatment. In Emerging Contaminants from Industrial and Municipal Waste: Removal Technologies; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5, pp. 127–175. [Google Scholar] [CrossRef]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs New Advanced Treatment Methods for the Removal of Contaminants of Emerging Concern from Urban Wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fu, L.; Chen, F.; Zhao, S.; Zhu, J.; Yin, C. Application of Heterogeneous Catalytic Ozonation in Wastewater Treatment: An Overview. Catalysts 2023, 13, 342. [Google Scholar] [CrossRef]
- Fahadi, M.; Nabavi, S.R.; Chaichi, M.J. Mesoporous Fe3O4/Graphene Oxide Nanohybrid for Catalytic Ozonation: Preparation, Characterization and Process Modeling by Neural Network. J. Taiwan Inst. Chem. Eng. 2022, 134, 104278. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuang, T.; Liu, S.; Sun, S.; Wang, Y.; Liu, X.; Wang, J.; Liu, R. Catalytic Ozonation of Atrazine Enhanced by Mesoporous CeO2: Morphology, Performance and Intermediates. Water 2022, 14, 3431. [Google Scholar] [CrossRef]
- Liu, R.Y.; Man Trinh, M.; Chuang, H.T.; Chang, M.B. Ozone Catalytic Oxidation of Low-Concentration Formaldehyde over Ternary Mn-Ce-Ni Oxide Catalysts Modified with FeOx. Environ. Sci. Pollut. Res. 2023, 30, 32696–32709. [Google Scholar] [CrossRef]
- Radjenović, J.; Petrović, M.; Barceló, D. Fate and Distribution of Pharmaceuticals in Wastewater and Sewage Sludge of the Conventional Activated Sludge (CAS) and Advanced Membrane Bioreactor (MBR) Treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef]
- Pi, Y.; Schumacher, J.; Jekel, M. The Use of Para-Chlorobenzoic Acid (PCBA) as an Ozone/Hydroxyl Radical Probe Compound. Ozone Sci. Eng. 2005, 27, 431–436. [Google Scholar] [CrossRef]
- Li, W.; Zhou, D.; Jiang, H.; Chen, H.; Guo, J.; Yang, J.; Wang, X.; Wang, H.; Yuan, X.; Jiang, L. MoO2 Co-Catalytic Fe3+/Periodate for Tetracycline Degradation: Key Role of Fe/Mo Cycling and High-Valent Iron (Fe(IV)) Generation. Sep. Purif. Technol. 2024, 346, 127509. [Google Scholar] [CrossRef]
- Wang, X.; Tang, W.; Li, Q.; Li, W.; Chen, H.; Liu, W.; Yang, J.; Yuan, X.; Wang, H.; Jiang, L. Accelerated Fe(III)/Fe(II) Cycle for Ultrafast Removal of Acetaminophen by a Novel W18O49 Co-Catalytic Fe3+/H2O2 Fenton-like System. Sep. Purif. Technol. 2024, 342, 127056. [Google Scholar] [CrossRef]
- Cardoso, R.M.F.; Esteves da Silva, J.C.G.; Pinto da Silva, L. Application of Engineered Nanomaterials as Nanocatalysts in Catalytic Ozonation: A Review. Materials 2024, 17, 3185. [Google Scholar] [CrossRef]
- Pattanateeradetch, A.; Sakulthaew, C.; Angkaew, A.; Sutjarit, S.; Poompoung, T.; Lin, Y.T.; Harris, C.E.; Comfort, S.; Chokejaroenrat, C. Fabrication of Ternary Nanoparticles for Catalytic Ozonation to Treat Parabens: Mechanisms, Efficiency, and Effects on Ceratophyllum demersum L. and Eker Leiomyoma Tumor-3 Cells. Nanomaterials 2022, 12, 3573. [Google Scholar] [CrossRef] [PubMed]
- Psaltou, S.; Kaprara, E.; Triantafyllidis, K.; Mitrakas, M.; Zouboulis, A. Heterogeneous Catalytic Ozonation: The Significant Contribution of PZC Value and Wettability of the Catalysts. J. Environ. Chem. Eng. 2021, 9, 106173. [Google Scholar] [CrossRef]
- Mansouri, L.; Tizaoui, C.; Geissen, S.U.; Bousselmi, L. A Comparative Study on Ozone, Hydrogen Peroxide and UV Based Advanced Oxidation Processes for Efficient Removal of Diethyl Phthalate in Water. J. Hazard. Mater. 2019, 363, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Levanov, A.V.; Azizova, P.S.; Gryaznov, R.A.; Isaikina, O.Y. Homogeneous Catalysis of Oxalic Acid Oxidation Reaction by Ozone in Strongly Acidic Solutions. Ozone Sci. Eng. 2024, 46, 407–418. [Google Scholar] [CrossRef]
- Betancur-Corredor, B.; Soltan, J.; Peñuela, G.A. Mineralization of Ibuprofen and Humic Acid through Catalytic Ozonation. Ozone Sci. Eng. 2016, 38, 203–210. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Liu, J.; Zhou, B.; Tang, Y.; Ju, J.; Guo, M. Enhanced Catalytic Oxidation of Toluene over Manganese-Based Multi-Metal Oxides Synthesized by Ozone Driving Redox Reaction. Sep. Purif. Technol. 2022, 300, 121904. [Google Scholar] [CrossRef]
- Rosal, R.; Rodríguez, A.; Gonzalo, M.S.; García-Calvo, E. Catalytic Ozonation of Naproxen and Carbamazepine on Titanium Dioxide. Appl. Catal. B 2008, 84, 48–57. [Google Scholar] [CrossRef]
- Alver, A.; Basturk, E. Removal of Aspartame by Catalytic Ozonation with Nano-TiO2 Coated Pumice. Desalination Water Treat. 2019, 152, 268–275. [Google Scholar] [CrossRef]
- Lincho, J.; Domingues, E.; Mazierski, P.; Miodyńska, M.; Klimczuk, T.; Zaleska-Medynska, A.; Martins, R.C.; Gomes, J. The Role of Noble Metals in TiO2 Nanotubes for the Abatement of Parabens by Photocatalysis, Catalytic and Photocatalytic Ozonation. Sep. Purif. Technol. 2023, 326, 124747. [Google Scholar] [CrossRef]
- Lee, W.J.; Bao, Y.; Hu, X.; Lim, T.T. Hybrid Catalytic Ozonation-Membrane Filtration Process with CeOx and MnOx Impregnated Catalytic Ceramic Membranes for Micropollutants Degradation. Chem. Eng. J. 2019, 378, 121670. [Google Scholar] [CrossRef]
- Lee, W.J.; Bao, Y.; Guan, C.; Hu, X.; Lim, T.T. Ce/TiOx-Functionalized Catalytic Ceramic Membrane for Hybrid Catalytic Ozonation-Membrane Filtration Process: Fabrication, Characterization and Performance Evaluation. Chem. Eng. J. 2021, 410, 128307. [Google Scholar] [CrossRef]
- Ćurković, L.; Briševac, D.; Ljubas, D.; Mandić, V.; Gabelica, I. Synthesis, Characterization, and Photocatalytic Properties of Sol-Gel Ce-TiO2 Films. Processes 2024, 12, 1144. [Google Scholar] [CrossRef]
- Ćurković, L.; Ljubas, D.; Šegota, S.; Bačić, I. Photocatalytic Degradation of Lissamine Green B Dye by Using Nanostructured Sol-Gel TiO2 Films. J. Alloys Compd. 2014, 604, 309–316. [Google Scholar] [CrossRef]
- Ding, H.; Hu, J. The Optimal Method for Peroxydisulfate Quenching: A Comparison of Commonly Used Reductants. Chemosphere 2021, 262, 128000. [Google Scholar] [CrossRef]
- Bader, H.; Hoigné, J. Determination of Ozone in Water by the Indigo Method. Water Res. 1981, 15, 449–456. [Google Scholar] [CrossRef]
- Ren, Y.; Dong, Q.; Feng, J.; Ma, J.; Wen, Q.; Zhang, M. Magnetic Porous Ferrospinel NiFe2O4: A Novel Ozonation Catalyst with Strong Catalytic Property for Degradation of Di-n-Butyl Phthalate and Convenient Separation from Water. J. Colloid. Interface Sci. 2012, 382, 90–96. [Google Scholar] [CrossRef]
- Chang, C.R.; Huang, Z.Q.; Li, J. The Promotional Role of Water in Heterogeneous Catalysis: Mechanism Insights from Computational Modeling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 679–693. [Google Scholar] [CrossRef]
- Ghuge, S.P.; Saroha, A.K. Catalytic Ozonation of Dye Industry Effluent Using Mesoporous Bimetallic Ru-Cu/SBA-15 Catalyst. Process Saf. Environ. Prot. 2018, 118, 125–132. [Google Scholar] [CrossRef]
- Mu, J.; Li, S.; Wang, J.; Li, X.; Chen, W.; Tong, X.; Tang, Y.; Li, L. Efficient Catalytic Ozonation of Bisphenol A by Three-Dimensional Mesoporous CeOx-Loaded SBA-16. Chemosphere 2021, 278, 130412. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Tobaldi, D.M.; Pullar, R.C.; Seabra, M.P.; Labrincha, J.A. Fully Quantitative X-Ray Characterisation of Evonik Aeroxide TiO2 P25®. Mater. Lett. 2014, 122, 345–347. [Google Scholar] [CrossRef]
- Muniz, F.T.L.; Miranda, M.A.R.; Morilla Dos Santos, C.; Sasaki, J.M. The Scherrer Equation and the Dynamical Theory of X-Ray Diffraction. Acta Crystallogr. A Found. Adv. 2016, 72, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Briševac, D.; Gabelica, I.; Ljubas, D.; Bafti, A.; Matijašić, G.; Ćurković, L. Effects of TiO2 Nanoparticles Synthesized via Microwave Assistance on Adsorption and Photocatalytic Degradation of Ciprofloxacin. Molecules 2024, 29, 2935. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, G.; Irudayaraj, A.A.; Raj, A.D. Investigation on the Synthesis and Photocatalytic Activity of Activated Carbon–Cerium Oxide (AC–CeO2) Nanocomposite. Appl. Phys. A Mater. Sci. Process 2019, 125, 742. [Google Scholar] [CrossRef]
- Oguz, E.; Keskinler, B. Comparison among O3, PAC Adsorption, O3/HCO3−, O3/H2O2 and O3/PAC Processes for the Removal of Bomaplex Red CR-L Dye from Aqueous Solution. Dye. Pigment. 2007, 74, 329–334. [Google Scholar] [CrossRef]
- Hoigné, J. Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation Processes. In Quality and Treatment of Drinking Water II. In The Handbook of Environmental Chemistry; Hrubec, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 5C, pp. 83–141. [Google Scholar]
- Panda, K.K.; Mathews, A.P. Mass Transfer of Ozone in a Novel In Situ Ozone Generator and Reactor. J. Environ. Eng. 2008, 134, 860–869. [Google Scholar] [CrossRef]
- Yershov, B.G.; Morozov, P.A.; Gordeev, A.V.; Seliverstov, A.F. Kinetic Regularities of Ozone Decomposition in Water. J. Water Chem. Technol. 2009, 31, 381–388. [Google Scholar] [CrossRef]
- Staehelln, J.; Holgné, J. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environ. Sci. Technol. 1982, 16, 676–681. [Google Scholar] [CrossRef]
- Von Sonntag, C.; Von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications; IWA Publishing: London, UK, 2020; ISBN 9781843393139. [Google Scholar]
- Nawrocki, J.; Kasprzyk-Hordern, B. The Efficiency and Mechanisms of Catalytic Ozonation. Appl. Catal. B 2010, 99, 27–42. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; He, H. Recent Advances in Catalytic Decomposition of Ozone. J. Environ. Sci. 2020, 94, 14–31. [Google Scholar] [CrossRef]
- Bilińska, M.; Bilińska, L.; Gmurek, M. Homogeneous and Heterogeneous Catalytic Ozonation of Textile Wastewater: Application and Mechanism. Catalysts 2023, 13, 6. [Google Scholar] [CrossRef]
- Ndabankulu, V.O.; Maddila, S.; Jonnalagadda, S.B. Ozone Facilitated Degradation of Caffeine Using Ce-TiO2 Catalyst. J. Environ. Sci. Health B 2019, 54, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhu, J.; Jiang, W.; Zhang, Z.; Wang, J.; Zhu, Y.; Zhang, Q. Surface Oxygen Vacancy Induced A-MnO2nanofiber for Highly Efficient Ozone Elimination. Appl. Catal. B 2017, 209, 729–737. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; Yang, L.; He, G.; Zhang, C.; Zhang, R.; He, H. Oxygen Vacancies Induced by Transition Metal Doping in γ-MnO2 for Highly Efficient Ozone Decomposition. Environ. Sci. Technol. 2018, 52, 12685–12696. [Google Scholar] [CrossRef]
- Lara-Ramos, J.A.; Angulo, M.A.F.; Machuca-Martínez, F.; Mueses, M.A. Sensitivity Analysis of the Catalytic Ozonation under Different Kinetic Modeling Approaches in the Diclofenac Degradation. Water 2021, 13, 3003. [Google Scholar] [CrossRef]
- Fan, S.; Song, J.; Xia, Y.; Dai, Q. Catalytic Ozonation of Thymol with a Novel CoCe-MMO Catalyst: Kinetics and Mechanism. Environ. Technol. Innov. 2021, 24, 101881. [Google Scholar] [CrossRef]
- Bourgin, M.; Beck, B.; Boehler, M.; Borowska, E.; Fleiner, J.; Salhi, E.; Teichler, R.; von Gunten, U.; Siegrist, H.; McArdell, C.S. Evaluation of a Full-Scale Wastewater Treatment Plant Upgraded with Ozonation and Biological Post-Treatments: Abatement of Micropollutants, Formation of Transformation Products and Oxidation by-Products. Water Res. 2018, 129, 486–498. [Google Scholar] [CrossRef]
- Piras, F.; Santoro, O.; Pastore, T.; Pio, I.; De Dominicis, E.; Gritti, E.; Caricato, R.; Lionetto, M.G.; Mele, G.; Santoro, D. Controlling Micropollutants in Tertiary Municipal Wastewater by O3/H2O2, Granular Biofiltration and UV254/H2O2 for Potable Reuse Applications. Chemosphere 2020, 239, 124635. [Google Scholar] [CrossRef]
- Derco, J.; Gotvajn, A.Ž.; Čižmárová, O.; Dudáš, J.; Sumegová, L.; Šimovičová, K. Removal of Micropollutants by Ozone-Based Processes. Processes 2021, 9, 1013. [Google Scholar] [CrossRef]
- Pocostales, P.; Álvarez, P.; Beltrán, F.J. Catalytic Ozonation Promoted by Alumina-Based Catalysts for the Removal of Some Pharmaceutical Compounds from Water. Chem. Eng. J. 2011, 168, 1289–1295. [Google Scholar] [CrossRef]
- Chen, M.; Yin, H.; Li, X.; Qiu, Y.; Cao, G.; Wang, J.; Yang, X.; Wang, P. Facet- and Defect-Engineered Pt/Fe2O3 Nanocomposite Catalyst for Catalytic Oxidation of Airborne Formaldehyde under Ambient Conditions. J. Hazard. Mater. 2020, 395, 122628. [Google Scholar] [CrossRef] [PubMed]
- Alhumade, H.; Akhtar, J.; Al-Shahrani, S.; Moujdin, I.A.; Tahir, M.B. Ozonation of Ibuprofen in Presence of SrWO4/ZnO Photo-Catalyst. Emerg. Contam. 2022, 8, 391–399. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef] [PubMed]
- Rame, R.; Purwanto, P.; Sudarno, S. A Comprehensive Review on Catalytic Ozonation: Emerging Trends and Future Perspectives. Desalination Water Treat. 2023, 315, 260–279. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, S.; Du, Q.; Bi, F.; Xie, K.; Wang, L. Effect of Calcination Temperature on the Structure and Performance of Rod-like MnCeOx Derived from MOFs Catalysts. Mol. Catal. 2022, 522, 112226. [Google Scholar] [CrossRef]
- Nzaba, S.K.M.; Mmelesi, O.K.; Malefane, M.E.; Mafa, P.J.; Mamba, B.B.; Kuvarega, A.T. Comparative Study of Visible-Light Active BiOI and N,Pd-TiO2 Photocatalysts: Catalytic Ozonation for Dye Degradation. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133167. [Google Scholar] [CrossRef]
- Liu, S.; He, Z.; Liao, X.; Liu, X.; Gao, M.; Zhang, H.; Zou, J.; Zhou, Z.; Yuan, B.; Yang, Z. Catalytic Ozonation Performance and Mechanisms of Cu-Co/γ-Al2O3 to Achieve Antibiotics and Ammonia Simultaneously Removal in Aquaculture Wastewater. Process Saf. Environ. Prot. 2024, 191, 112226. [Google Scholar] [CrossRef]
Micropollutant | Molecular Structure | Molar Mass [g mol−1] * | Log Kow * | pKa * |
---|---|---|---|---|
Carbamazepine (CBZ) | 236.27 | 2.45 | 13.9 | |
Diclofenac (DCF) | 296.15 | 4.51 | 4.15 | |
Ibuprofen (IBP) | 206.29 | 3.97 | 5.3/4.4 | |
para-Chlorobenzoic acid (pCBA) | 156.57 | 2.65 | 3.98 |
Factors | Class | Levels | ||||
---|---|---|---|---|---|---|
x1: Transferred Ozone dose [μM] | Numerical | 0 | 50 | 100 | 150 | |
x2: Nanoparticles concentration [g L−1] | Numerical | 0 | 0.5 | 1 | 1.5 | |
x3: Nanoparticles type | Categorical | α-Al2O3 | CeO2 | Mn2O3 | TiO2 | CeTiOx |
y: % removal for CBZ, DCF, IBP, and pCBA | Response |
Parameter | Symbol, Unit | α-Al2O3 | Mn2O3 | TiO2 | CeO2 | CeTiOx |
---|---|---|---|---|---|---|
Specific surface | SBET, m2 g−1 | 147.8 | 18.6 | 49 | 41.3 | 36.4 |
Pore volume | Vpores, cm3 g−1 | 0.902 | 0.059 | 0.169 | 0.157 | 0.043 |
Micropore Volume (<2 nm) | Vmicropores, cm3 g−1 | 0.002 | 0.0007 | - | 0.0005 | - |
Mean pore diameter | dpore, nm | 22.9 | 11.2 | 8.3 | 14.1 | 4.5 |
Mean particle size | dpatricle, nm | 78 | 28 | 28 | 28 | - |
Model Intercept | Nanoparticles Type | ||||
---|---|---|---|---|---|
b0 | α-Al2O3 | Mn2O3 | CeO2 | TiO2 | CeTiOx |
CBZ | 0.345 | −1.95 | 1.43 | 1.30 | −1.51 |
DCF | 0.327 | −1.62 | 1.58 | 1.06 | −1.52 |
IBP * | 1.79 | 1.79 | 1.79 | 1.79 | 1.79 |
pCBA | 0.314 | −2.22 | 1.97 | 1.38 | 1.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiarta, N.; Gernjak, W.; Cajner, H.; Matijašić, G.; Ćurković, L. Heterogeneous Catalytic Ozonation of Pharmaceuticals: Optimization of the Process by Response Surface Methodology. Nanomaterials 2024, 14, 1747. https://doi.org/10.3390/nano14211747
Tsiarta N, Gernjak W, Cajner H, Matijašić G, Ćurković L. Heterogeneous Catalytic Ozonation of Pharmaceuticals: Optimization of the Process by Response Surface Methodology. Nanomaterials. 2024; 14(21):1747. https://doi.org/10.3390/nano14211747
Chicago/Turabian StyleTsiarta, Nikoletta, Wolfgang Gernjak, Hrvoje Cajner, Gordana Matijašić, and Lidija Ćurković. 2024. "Heterogeneous Catalytic Ozonation of Pharmaceuticals: Optimization of the Process by Response Surface Methodology" Nanomaterials 14, no. 21: 1747. https://doi.org/10.3390/nano14211747
APA StyleTsiarta, N., Gernjak, W., Cajner, H., Matijašić, G., & Ćurković, L. (2024). Heterogeneous Catalytic Ozonation of Pharmaceuticals: Optimization of the Process by Response Surface Methodology. Nanomaterials, 14(21), 1747. https://doi.org/10.3390/nano14211747