Semiconductor Nanomaterials for Optoelectronic Applications
1. Introduction
2. Overview of Contributed Articles
3. Summary
Acknowledgments
Conflicts of Interest
List of Contributions
- Li, H.; Ding, C.; Liu, D.; Yajima, S.; Takahashi, K.; Hayase S.; Shen, Q.; Efficient Charge Transfer in MAPbI3 QDs/TiO2 Heterojunctions for High-Performance Solar Cells. Nanomaterials 2023, 13, 1292. https://doi.org/10.3390/nano13071292.
- Hsieh, H.Y.; Liou, P.W.; Yang, S.; Chen, W.C.; Liang, L.P.; Lee, Y.C.; Yang, C.C.; Behaviors of AlGaN Strain Relaxation on a GaN Porous Structure Studied with d-Spacing Crystal Lattice Analysis. Nanomaterials 2023, 13, 1617. https://doi.org/10.3390/nano13101617.
- Lin, Y.C.; Lo, I.; Tsai, C.D.; Wang, Y.C.; Huang, H.C.; Li, C.A.; Chou, M.M.C.; Chang, T.C. Optimization of Ternary InxGa1-xN Quantum Wells on GaN Microdisks for Full-Color GaN Micro-LEDs. Nanomaterials 2023, 13, 1922. https://doi.org/10.3390/nano13131922.
- Balberg, I. Glassy-like Transients in Semiconductor Nanomaterials. Nanomaterials 2024, 14, 471. https://doi.org/10.3390/nano14050471.
- Li, J.; Li, Q.; Chen, R.; Zhang, Q.; Fang, Liu, W.; K.; Yun, F. Single-Mode Control and Individual Nanoparticle Detection in the Ultraviolet Region Based on Boron Nitride Microdisk with Whispering Gallery Mode. Nanomaterials 2024, 14, 501. https://doi.org/10.3390/nano14060501.
- Sun, Q.; Tian, Z.; Xu, C.; Yu, A.; Li, F.; Yun, F. Double-Layer Metasurface Integrated with Micro-LED for Naked-Eye 3D Display. Nanomaterials 2024, 14, 1624. https://doi.org/10.3390/nano14201624.
References
- Crommie, M.F.; Lutz, C.P.; Eigler, D.M. Confinement of electrons to quantum corrals on a metal-surface. Science 1993, 262, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, L.; West, K.W.; Stormer, H.L.; Baldwin, K.W. Electron mobilities exceeding 107 cm2/Vs in modulation-doped GaAs. Appl. Phys. Lett. 1989, 55, 1888. [Google Scholar] [CrossRef]
- Lo, I.; Mitchel, W.C.; Perrin, R.E.; Messham, R.L.; Yen, M.Y. Two dimensional electron gas in GaAs/Al0.3Ga0.7As heterostructures: Effective mass. Phys. Rev. B 1991, 43, l1787. [Google Scholar] [CrossRef] [PubMed]
- Lo, I.; Tsai, J.K.; Ho, P.C.; Yao, W.J.; Chang, C.H.; Chiang, J.-C.; Tu, L.-W.; Zhao, Q.X. Second subband population of two-dimensional electron gas in strongly coupled GaAs/Al0.3Ga0.7As double quantum wells. Phys. Rev. B 2003, 67, 195317. [Google Scholar] [CrossRef]
- Hisamoto, D.; Lee, W.-C.; Kedzierski, J.; Takeuchi, H.; Asano, K.; Kuo, C.; Anderson, E.; King, T.-J.; Bokor, J.; Hu, C. FinFET—A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron. Devices 2000, 47, 2320. [Google Scholar]
- Furusaki, A.; Matveev, K.A. Coulomb Blockade Oscillations of Conductance in the Regime of Strong Tunneling. Phys. Rev. Lett. 1995, 75, 709. [Google Scholar] [CrossRef] [PubMed]
- Lo, I.; Chen, Y.L.; Pang, W.Y.; Hsu, Y.C.; Chiang, J.C.; Yang, C.C.; Su, J.Y. Spin splitting in AlxGa1−xN/GaN quasiballistic quantum wires. J. Appl. Phys. 2009, 105, 093716. [Google Scholar] [CrossRef]
- Lo, I.; Tsai, J.K.; Yao, W.J.; Ho, P.C.; Tu, L.-W.; Chang, T.C.; Elhamri, S.; Mitchel, W.C.; Hsieh, K.Y.; Huang, J.H.; et al. Spin splitting in modulation-doped AlxGa1−xN/GaN heterostructures. Phys. Rev. B 2002, 65, 161306. [Google Scholar] [CrossRef]
- Lo, I.; Wang, W.T.; Gau, M.H.; Tsai, J.K.; Tsay, S.F.; Chiang, J.-C. Gate-controlled spin splitting in GaN/AlN quantum wells. Appl. Phys. Lett. 2006, 88, 082108. [Google Scholar] [CrossRef]
- Lo, I.; Pang, W.Y.; Chen, Y.L.; Hsu, Y.C.; Chiang, J.C.; Lin, W.H.; Chiu, W.T.; Tsai, J.K.; Chen, C.N. Spin-splitting in an AlxGa1-xN/GaN nanowire for a quantum-ring interferometer. Appl. Phys. Lett. 2008, 93, 132114. [Google Scholar] [CrossRef]
- Tu, L.W.; Hsiao, C.L.; Chi, T.W.; Lo, I.; Hsieh, K.Y. Self-assembled vertical GaN nanorods grown by molecular beam epitaxy. Appl. Phys. Lett. 2003, 82, 1601. [Google Scholar] [CrossRef]
- Lo, I.; Hsieh, C.H.; Hsu, Y.C.; Pang, W.Y.; Chou, M.M.C. Self-assembled GaN hexagonal micropyramid and microdisk. Appl. Phys. Lett. 2009, 94, 062105. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Lo, I.; Shih, C.H.; Pang, W.Y.; Hu, C.H.; Wang, Y.C.; Chou, M.M.C. InGaN/GaN single-quantum-well microdisk. Appl. Phys. Lett. 2012, 100, 242101. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Lo, I.; Shih, C.H.; Pang, W.Y.; Hu, C.H.; Wang, Y.C.; Tsai, C.D.; Chou, M.M.C.; Hsu, G.Z.L. Green light emission by InGaN/GaN multiple-quantum-well microdisks. Appl. Phys. Lett. 2014, 104, 102105. [Google Scholar] [CrossRef]
- Tsai, C.D.; Lo, I.; Wang, Y.C.; Yang, C.C.; Yang, H.Y.; Shih, H.C.; Huang, H.C.; Chou, M.M.C.; Huang, L.; Tseng, B. Indium-Incorporation with InxGa1-xN Layers on GaN-Microdisks by Plasma-Assisted Molecular Beam Epitaxy. Crystals 2019, 9, 308. [Google Scholar] [CrossRef]
- Yang, H.Y.; Lo, I.; Tsai, C.D.; Wang, Y.C.; Shih, H.J.; Huang, H.C.; Chou, M.M.C.; Huang, L.; Wang, T.; Kuo, C.T.C. Anisotropic Strain on GaN Microdisks Grown by Plasma-Assisted Molecular Beam Epitaxy. Crystals 2020, 10, 899. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lo, I.; Tsai, C.D.; Wang, Y.C.; Huang, H.C.; Li, C.A.; Chou, M.M.C.; Chang, T.C. Optimization of Ternary InxGa1-xN Quantum Wells on GaN Microdisks for Full-Color GaN Micro-LEDs. Nanomaterials 2023, 13, 1922. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, I. Semiconductor Nanomaterials for Optoelectronic Applications. Nanomaterials 2024, 14, 1896. https://doi.org/10.3390/nano14231896
Lo I. Semiconductor Nanomaterials for Optoelectronic Applications. Nanomaterials. 2024; 14(23):1896. https://doi.org/10.3390/nano14231896
Chicago/Turabian StyleLo, Ikai. 2024. "Semiconductor Nanomaterials for Optoelectronic Applications" Nanomaterials 14, no. 23: 1896. https://doi.org/10.3390/nano14231896
APA StyleLo, I. (2024). Semiconductor Nanomaterials for Optoelectronic Applications. Nanomaterials, 14(23), 1896. https://doi.org/10.3390/nano14231896