Synthesis and Application of Optical Nanomaterials
Funding
Conflicts of Interest
References
- Kim, Y.; Rho, W.; Park, S.; Jun, B. Optical nanomaterial-based detection of biomarkers in liquid biopsy. J. Hematol. Oncol. 2024, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Huang, X.; El-Sayed, I.; El-Sayed, M. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 2008, 41, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.; Maxwell, D.; Gao, X.; Bailey, R.; Han, M.; Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shin, M.S.; Shin, J.; Kim, H.M.; Pham, X.H.; Park, S.; Kim, D.E.; Kim, Y.J.; Jun, B.H. Trends in Lateral Flow Immunoassays with Optical Nanoparticles. Int. J. Mol. Sci. 2023, 24, 9600. [Google Scholar] [CrossRef] [PubMed]
- Hahm, E.; Jeong, D.; Cha, M.; Choi, J.M.; Pham, X.-H.; Kim, H.-M.; Kim, H.; Lee, Y.-S.; Jeong, D.H.; Jung, S.; et al. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons. Sci. Rep. 2016, 6, 26082. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, S.; Hahm, E.; Kim, J.; Cha, M.G.; Kim, K.M.; Kang, H.; Kyeong, S.; Pham, X.H.; Lee, Y.-S.; et al. Large scale synthesis of surface-enhanced Raman scattering nanoprobes with high reproducibility and long-term stability. J. Ind. Eng. Chem. 2016, 33, 22–27. [Google Scholar] [CrossRef]
- Kim, H.M.; Oh, C.; An, J.; Baek, S.; Bock, S.; Kim, J.; Jung, H.S.; Song, H.; Kim, J.-W.; Jo, A.; et al. Multi-Quantum Dots-Embedded Silica-Encapsulated Nanoparticle-Based Lateral Flow Assay for Highly Sensitive Exosome Detection. Nanomaterials 2021, 11, 768. [Google Scholar] [CrossRef]
- Bock, S.; Kim, H.M.; Kim, J.; An, J.; Choi, Y.S.; Pham, X.H.; Jo, A.; Ham, K.; Song, H.; Kim, J.W.; et al. Lateral Flow Immunoassay with Quantum-Dot-Embedded Silica Nanoparticles for Prostate-Specific Antigen Detection. Nanomaterials 2022, 12, 33. [Google Scholar] [CrossRef]
- Cho, H.; Noh, M.; Kim, Y.; Namgung, J.; Yoo, K.; Shin, M.S.; Yang, C.H.; Kim, Y.J.; Yu, S.J.; Chang, H.; et al. Recent Studies on Metal-Embedded Silica Nanoparticles for Biological Applications. Nanomaterials 2024, 14, 268. [Google Scholar] [CrossRef]
- Hahm, E.; Jo, A.; Kang, E.; Yoo, K.; Shin, M.; An, J.; Pham, X.; Kim, H.; Kang, H.; Kim, J.; et al. Silica Encapsulation of Hydrophobic Optical NP-Embedded Silica Particles with Trimethoxy(2-Phenylethyl)silane. Nanomaterials 2023, 13, 2145. [Google Scholar] [CrossRef]
- Kim, N.; Kim, Y.; Jo, G.; Yoo, J.; Park, S.; Jun, B.H.; Yeo, W.S. Efficient Analysis of Small Molecules via Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (LDI-TOF MS) Using Gold Nanoshells with Nanogaps. Nanomaterials 2024, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Liu, W.; Liu, Y.; Li, Z. Near-Infrared Perfect Absorption and Refractive Index Sensing Enabled by Split Ring Nanostructures. Nanomaterials 2023, 13, 2668. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yan, Q.; Zhao, X.; He, Y. The Influence of Surface Processing on the Surface Plasmonic Enhancement of an Al-Nanoparticles-Enhanced ZnO UV Photodectector. Nanomaterials 2023, 13, 1877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zi, X.; Bi, J.; Liu, G.; Cheng, H.; Bao, K.; Qin, L.; Wang, W. Plasmonic Nanomaterials in Dark Field Sensing Systems. Nanomaterials 2023, 13, 2027. [Google Scholar] [CrossRef] [PubMed]
- Maciulis, V.; Ramanaviciene, A.; Plikusiene, I. Recent Advances in Synthesis and Application of Metal Oxide Nanostructures in Chemical Sensors and Biosensors. Nanomaterials 2022, 12, 4413. [Google Scholar] [CrossRef]
- Ouyang, J.; Peng, Y.; Zhou, W.; Liang, X.; Wang, G.; Zhang, Q.; Yuan, B. The Role of Oxygen Vacancies in Phase Transition and the Optical Absorption Properties within Nanocrystalline ZrO2. Nanomaterials 2024, 14, 967. [Google Scholar] [CrossRef]
- Chauhan, K.; Kim, D.; Cho, E.; Kim, D. Facilitation of Dye-Based Quantitative Real-Time Polymerase Chain Reaction with Poly(ethylene glycol)-Engrafted Graphene Oxide. Nanomaterials 2023, 13, 1348. [Google Scholar] [CrossRef]
- Gamaly, E.; Juodkazis, S. Laser-Metal Interaction with a Pulse Shorter than the Ion Period: Ablation Threshold, Electron Emission and Ion Explosion. Nanomaterials 2023, 13, 1796. [Google Scholar] [CrossRef]
- Shchur, Y.; Bendak, A.; Beltramo, G.; Andrushchak, A.S.; Vitusevich, S.; Pustovyj, D.; Sahraoui, B.; Slyvka, Y.; Kityk, A.V. Nanoarhitectonics of Inorganic-Organic Silica-Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis. Nanomaterials 2023, 13, 1913. [Google Scholar] [CrossRef]
- Dabert, M.; Papanastasiou, D.; Vidal, L.; Hajjar-Garreau, S.; Bellet, D.; Lougnot, D.; Balan, L. Enhancing the Properties of Photo-Generated Metallized Nanocomposite Coatings through Thermal Annealing. Nanomaterials 2024, 14, 193. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Wang, Z.; Xiang, Z.; Wang, Z.; Li, S.; Zhang, M.; Liu, W. Achieving Tunable Mechanoluminescence in CaZnOS:Tb3+, Sm3+ for Multicolor Stress Sensing. Nanomaterials 2024, 14, 1279. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jun, B.-H. Synthesis and Application of Optical Nanomaterials. Nanomaterials 2024, 14, 1904. https://doi.org/10.3390/nano14231904
Jun B-H. Synthesis and Application of Optical Nanomaterials. Nanomaterials. 2024; 14(23):1904. https://doi.org/10.3390/nano14231904
Chicago/Turabian StyleJun, Bong-Hyun. 2024. "Synthesis and Application of Optical Nanomaterials" Nanomaterials 14, no. 23: 1904. https://doi.org/10.3390/nano14231904
APA StyleJun, B.-H. (2024). Synthesis and Application of Optical Nanomaterials. Nanomaterials, 14(23), 1904. https://doi.org/10.3390/nano14231904