Enhanced Catalytic Activity of CuO@CuS Core–Shell Structure for Highly Efficient HER Application
Abstract
:1. Introduction
2. Materials and Synthesis Procedures
2.1. Chemical Materials
2.2. Synthesis of CS and NCOS
2.3. Characterization of the Material
2.4. Electrochemical HER Evaluation
3. Results and Discussion
3.1. Crystallographic and Compositional Properties
3.2. Chemical State Characteristics
3.3. Morphological Properties
3.4. Electrochemical HER Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Lu, A.; Zhong, C.-J. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.-Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2019, 120, 851–918. [Google Scholar] [CrossRef] [PubMed]
- Benck, J.D.; Hellstern, T.R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T.F. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catal. 2014, 4, 3957–3971. [Google Scholar] [CrossRef]
- Van der Spek, M.; Banet, C.; Bauer, C.; Gabrielli, P.; Goldthorpe, W.; Mazzotti, M.; Munkejord, S.T.; Røkke, N.A.; Shah, N.; Sunny, N. Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ. Sci. 2022, 15, 1034–1077. [Google Scholar] [CrossRef]
- Solangi, K.; Islam, M.; Saidur, R.; Rahim, N.; Fayaz, H. A review on global solar energy policy. Renew. Sustain. Energy Rev. 2011, 15, 2149–2163. [Google Scholar] [CrossRef]
- Lewis, N.S.; Crabtree, G.; Nozik, A.J.; Wasielewski, M.R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005; DOESC (USDOE Office of Science (SC)): Washington, DC, USA, 2005. [Google Scholar]
- Xu, X.; Pan, Y.; Zhong, Y.; Ran, R.; Shao, Z. Ruddlesden–Popper perovskites in electrocatalysis. Mater. Horiz. 2020, 7, 2519–2565. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Liu, S.; Hu, Z.; Wu, Y.; Zhang, J.; Zhang, Y.; Cui, B.; Liu, C.; Hu, S.; Zhao, N.; Han, X.; et al. Dislocation-Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction. Adv. Mater. 2020, 32, 2006034. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.X.; Chen, Z.W.; Zhang, Y.; Yang, C.C.; Jiang, Q. Insight into the excellent catalytic activity of (CoMo)S2/graphene for hydrogen evolution reaction. Appl. Catal. B Environ. 2019, 258, 118012. [Google Scholar] [CrossRef]
- He, J.; Tong, Y.; Wang, Z.; Zhou, G.; Ren, X.; Zhu, J.; Zhang, N.; Chen, L.; Chen, P. Oxygenate-induced structural evolution of high-entropy electrocatalysts for multifunctional alcohol electrooxidation integrated with hydrogen production. Proc. Natl. Acad. Sci. USA 2024, 121, e2405846121. [Google Scholar] [CrossRef]
- Ren, X.; Lin, C.; Zhou, G.; He, J.; Tong, Y.; Chen, P. Pt-decorated spinel MnCo2O4 nanosheets enable ampere-level hydrazine assisted water electrolysis. J. Colloid Interface Sci. 2024, 676, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhang, Q.; Tong, Y.; Zhou, G.; Lin, C.; Zhao, Y.; Chen, P. Nickel-copper alloying arrays realizing efficient co-electrosynthesis of adipic acid and hydrogen. J. Energy Chem. 2025, 101, 7–15. [Google Scholar] [CrossRef]
- Tabassum, L.; Khairul Islam, M.; Perera, I.P.; Li, M.; Huang, X.; Tasnim, H.; Suib, S.L. Facile Synthesis of Transition-Metal-Doped (Fe, Co, and Ni) CuS/CuO/CS Nanorod Arrays for Superior Electrocatalytic Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2022, 5, 12039–12048. [Google Scholar] [CrossRef]
- D’Amore, F.; Pereira, L.M.C.; Campanari, S.; Gazzani, M.; Romano, M.C. A novel process for CO2 capture from steam methane reformer with molten carbonate fuel cell. Int. J. Hydrogen Energy 2023, 48, 37366–37384. [Google Scholar] [CrossRef]
- Zhao, J.-W.; Shi, Z.-X.; Li, C.-F.; Ren, Q.; Li, G.-R. Regulation of Perovskite Surface Stability on the Electrocatalysis of Oxygen Evolution Reaction. ACS Mater. Lett. 2021, 3, 721–737. [Google Scholar] [CrossRef]
- Yuan, C.-Z.; Hui, K.S.; Yin, H.; Zhu, S.; Zhang, J.; Wu, X.-L.; Hong, X.; Zhou, W.; Fan, X.; Bin, F.; et al. Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting. ACS Mater. Lett. 2021, 3, 752–780. [Google Scholar] [CrossRef]
- Hansen, J.N.; Prats, H.; Toudahl, K.K.; Mørch Secher, N.; Chan, K.; Kibsgaard, J.; Chorkendorff, I. Is There Anything Better than Pt for HER? ACS Energy Lett. 2021, 6, 1175–1180. [Google Scholar] [CrossRef]
- Chen, L.; Kang, L.; Cai, D.; Geng, S.; Liu, Y.; Chen, J.; Song, S.; Wang, Y. Ultrafine Pt-based catalyst decorated with oxygenophilic Ni-sites accelerating alkaline H2O dissociation for efficient hydrogen evolution. J. Colloid Interface Sci. 2023, 650, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- Anantharaj, S.; Noda, S.; Jothi, V.R.; Yi, S.; Driess, M.; Menezes, P.W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem. Int. Ed. 2021, 60, 18981–19006. [Google Scholar] [CrossRef]
- Mishra, I.K.; Zhou, H.; Sun, J.; Dahal, K.; Ren, Z.; He, R.; Chen, S.; Ren, Z. Highly efficient hydrogen evolution by self-standing nickel phosphide-based hybrid nanosheet arrays electrocatalyst. Mater. Today Phys. 2018, 4, 1–6. [Google Scholar] [CrossRef]
- Han, N.; Yang, K.R.; Lu, Z.; Li, Y.; Xu, W.; Gao, T.; Cai, Z.; Zhang, Y.; Batista, V.S.; Liu, W. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924. [Google Scholar] [CrossRef] [PubMed]
- Yao, N.; Li, P.; Zhou, Z.; Meng, R.; Cheng, G.; Luo, W. Nitrogen engineering on 3D dandelion-flower-like CoS2 for high-performance overall water splitting. Small 2019, 15, 1901993. [Google Scholar] [CrossRef]
- Aqueel Ahmed, A.T.; Pawar, S.M.; Inamdar, A.I.; Kim, H.; Im, H. A Morphologically Engineered Robust Bifunctional CuCo2O4 Nanosheet Catalyst for Highly Efficient Overall Water Splitting. Adv. Mater. Interfaces 2020, 7, 1901515. [Google Scholar] [CrossRef]
- Yao, N.; Li, P.; Zhou, Z.; Zhao, Y.; Cheng, G.; Chen, S.; Luo, W. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis. Adv. Energy Mater. 2019, 9, 1902449. [Google Scholar] [CrossRef]
- Yu, F.; Yu, L.; Mishra, I.; Yu, Y.; Ren, Z.; Zhou, H. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater. Today Phys. 2018, 7, 121–138. [Google Scholar] [CrossRef]
- Vrubel, H.; Hu, X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. Engl. 2012, 51, 12703–12706. [Google Scholar] [CrossRef]
- Sajeev, A.; Paul, A.M.; Nivetha, R.; Gothandapani, K.; Gopal, T.S.; Jacob, G.; Muthuramamoorty, M.; Pandiaraj, S.; Alodhayb, A.; Kim, S.Y.; et al. Development of Cu3N electrocatalyst for hydrogen evolution reaction in alkaline medium. Sci. Rep. 2022, 12, 2004. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, Z.; Wu, Z.; Zhang, B.; Zhang, Y.; Ding, S.; Xiao, C. Galvanic-replacement mediated synthesis of copper–nickel nitrides as electrocatalyst for hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 24850–24858. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Wang, G.; Zhang, P.P.; Zhuang, X.D.; Chen, M.W.; Weidinger, I.M.; Feng, X.L. Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution. J. Mater. Chem. A 2017, 5, 25314–25318. [Google Scholar] [CrossRef]
- Chang, B.; Hao, S.; Ye, Z.; Yang, Y. A self-supported amorphous Ni–P alloy on a CuO nanowire array: An efficient 3D electrode catalyst for water splitting in alkaline media. Chem. Commun. 2018, 54, 2393–2396. [Google Scholar] [CrossRef]
- Zequine, C.; Bhoyate, S.; Wang, F.; Li, X.; Siam, K.; Kahol, P.K.; Gupta, R.K. Effect of solvent for tailoring the nanomorphology of multinary CuCo2S4 for overall water splitting and energy storage. J. Alloys Compd. 2019, 784, 1–7. [Google Scholar] [CrossRef]
- Wei, S.; Qi, K.; Jin, Z.; Cao, J.; Zheng, W.; Chen, H.; Cui, X. One-Step Synthesis of a Self-Supported Copper Phosphide Nanobush for Overall Water Splitting. ACS Omega 2016, 1, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; He, J.; Zhang, W.; Zhao, X.; Qiu, S.; An, C. Rational design of Co (II) dominant and oxygen vacancy defective CuCo2O4@ CQDs hollow spheres for enhanced overall water splitting and supercapacitor performance. Inorg. Chem. 2018, 57, 7380–7389. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, Y.; Chen, Y.; Wang, Y.; Sun, C. An efficient ultra-thin chain-structured copper cobalt oxide/sulfide composite catalyst for electrochemical hydrogen generation. RSC Adv. 2016, 6, 43185–43190. [Google Scholar] [CrossRef]
- Sarfraz, B.; Bashir, I.; Rauf, A. CuS/NiFe-LDH/NF as a Bifunctional Electrocatalyst for Hydrogen Evolution (HER) and Oxygen Evolution Reactions (OER). Fuel 2023, 337, 127253. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, J.; Xu, R.; He, D.; Niu, M.; Li, X.; Xu, G.; Cao, L.; Feng, L. Mo-Doped Cu2S Multilayer Nanosheets Grown In Situ on Copper Foam for Efficient Hydrogen Evolution Reaction. Molecules 2022, 27, 5961. [Google Scholar] [CrossRef]
- Ahmed, A.T.A.; Ansari, A.S.; Pawar, S.M.; Shong, B.; Kim, H.; Im, H. Anti–corrosive FeO decorated CuCo2S4 as an efficient and durable electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 2021, 539, 148229. [Google Scholar] [CrossRef]
- Wang, C.; An, C.; Qin, C.; Gomaa, H.; Deng, Q.; Wu, S.; Hu, N. Noble Metal-Based Catalysts with Core-Shell Structure for Oxygen Reduction Reaction: Progress and Prospective. Nanomaterials 2022, 12, 2480. [Google Scholar] [CrossRef]
- Bharadwaj, N.; Nair, A.S.; Pathak, B. Dimensional-Dependent Effects in Platinum Core–Shell-Based Catalysts for Fuel Cell Applications. ACS Appl. Nano Mater. 2021, 4, 9697–9708. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, H.; Wang, Y.; Chen, Z. First principles study on the oxygen reduction reaction of Ir@Pt core-shell structure. Chem. Phys. 2022, 552, 111356. [Google Scholar] [CrossRef]
- Wu, T.; Guo, R.-t.; Li, C.-f.; You, Y.-h.; Pan, W.-g. Recent advances in core-shell structured catalysts for low-temperature NH3-SCR of NOx. Chemosphere 2023, 333, 138942. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.T.A.; Sree, V.G.; Meena, A.; Inamdar, A.I.; Im, H.; Cho, S. In Situ Transformed CoOOH@Co3S4 Heterostructured Catalyst for Highly Efficient Catalytic OER Application. Nanomaterials 2024, 14, 1732. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, Y.; Liao, S.; Su, D.; Song, H.; Li, Y.; Yang, L.; Li, C. Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method. Sci. Rep. 2015, 5, 11604. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ai, C.; Deng, S.; Wang, Y.; Tong, X.; Wang, X.; Xia, X.; Tu, J. Nitrogen doped vertical graphene as metal-free electrocatalyst for hydrogen evolution reaction. Mater. Res. Bull. 2021, 134, 111094. [Google Scholar] [CrossRef]
- Grabowska, P.; Szkoda, M.; Skorupska, M.; Lukaszewicz, J.P.; Ilnicka, A. Synergistic effects of nitrogen-doped carbon and praseodymium oxide in electrochemical water splitting. Sci. Rep. 2023, 13, 18632. [Google Scholar] [CrossRef]
- Kubińska, L.; Szkoda, M.; Skorupska, M.; Grabowska, P.; Gajewska, M.; Lukaszewicz, J.P.; Ilnicka, A. Combined effect of nitrogen-doped carbon and NiCo2O4 for electrochemical water splitting. Sci. Rep. 2024, 14, 26930. [Google Scholar] [CrossRef]
- Nguyen, A.Q.K.; Huynh, Q.; Huynh, T.T.; Pham, H.Q. Nitrogen-doping engineering in two-dimensional transition-metal carbides for electrochemical hydrogen evolution. Int. J. Hydrogen Energy 2024, 86, 638–648. [Google Scholar] [CrossRef]
- Jiang, D.; Wei, M.; Du, X.; Qin, M.; Shan, X.; Chen, Z. One-pot synthesis of ZnO quantum dots/N-doped Ti3C2 MXene: Tunable nitrogen-doping properties and efficient electrochemiluminescence sensing. Chem. Eng. J. 2022, 430, 132771. [Google Scholar] [CrossRef]
- Ahmed, A.T.A.; Ansari, A.S.; Sree, V.G.; Jana, A.; Meena, A.; Sekar, S.; Cho, S.; Kim, H.; Im, H. Nitrogen-Doped CuO@CuS Core–Shell Structure for Highly Efficient Catalytic OER Application. Nanomaterials 2023, 13, 3160. [Google Scholar] [CrossRef]
- Liu, J.; Xue, D. Solvothermal synthesis of copper sulfide semiconductor micro/nanostructures. Mater. Res. Bull. 2010, 45, 309–313. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Sun, J.; Zhang, Z.; Lu, B.; Guo, J. Thermal Puffing Promoting the Synthesis of N-Doped Hierarchical Porous Carbon–CoOx Composites for Alkaline Water Reduction. ACS Omega 2021, 6, 6474–6481. [Google Scholar] [CrossRef] [PubMed]
- Chaki, S.H.; Tailor, J.P.; Deshpande, M.P. Covellite CuS—Single crystal growth by chemical vapour transport (CVT) technique and characterization. Mater. Sci. Semicond. Process. 2014, 27, 577–585. [Google Scholar] [CrossRef]
- Murthy, P.S.; Venugopalan, V.P.; Arunya, D.D.; Dhara, S.; Pandiyan, R.; Tyagi, A.K. Antibiofilm activity of nano sized CuO. In Proceedings of the International Conference on Nanoscience, Engineering and Technology (ICONSET 2011), Chennai, India, 28–30 November 2011; pp. 580–583. [Google Scholar]
- Yeryukov, N.A.; Milekhin, A.G.; Sveshnikova, L.L.; Duda, T.A.; Pokrovsky, L.D.; Gutakovskii, A.K.; Batsanov, S.A.; Rodyakina, E.E.; Latyshev, A.V.; Zahn, D.R.T. Synthesis and Characterization of CuxS (x = 1–2) Nanocrystals Formed by the Langmuir–Blodgett Technique. J. Phys. Chem. C 2014, 118, 23409–23414. [Google Scholar] [CrossRef]
- Adhikari, S.; Sarkar, D.; Madras, G. Hierarchical Design of CuS Architectures for Visible Light Photocatalysis of 4-Chlorophenol. ACS Omega 2017, 2, 4009–4021. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Li, J.; Chen, G.; Xue, C.; Liu, W.; Zhu, C. Preparation of Cu2ZnSnS4-based thin film solar cells by a combustion method. Sol. Energy Mater. Sol. Cells 2016, 146, 16–24. [Google Scholar] [CrossRef]
- Ahmed, A.T.A.; Han, J.; Shin, G.; Park, S.; Yeon, S.; Park, Y.; Kim, H.; Im, H. Sulfur-Rich N-Doped Co9S8 Catalyst for Highly Efficient and Durable Overall Water Electrolysis Application. Int. J. Energy Res. 2023, 2023, 4176447. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, N.Y.; Shin, D.Y.; Park, H.-Y.; Lee, S.-S.; Joon Kwon, S.; Lim, D.-H.; Bong, K.W.; Son, J.G.; Kim, J.Y. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts. J. Nanopart. Res. 2017, 19, 98. [Google Scholar] [CrossRef]
- Ayiania, M.; Smith, M.; Hensley, A.J.R.; Scudiero, L.; McEwen, J.-S.; Garcia-Perez, M. Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. Carbon 2020, 162, 528–544. [Google Scholar] [CrossRef]
- Kiuchi, H.; Kondo, T.; Sakurai, M.; Guo, D.; Nakamura, J.; Niwa, H.; Miyawaki, J.; Kawai, M.; Oshima, M.; Harada, Y. Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering. Phys. Chem. Chem. Phys. 2016, 18, 458–465. [Google Scholar] [CrossRef]
- Talha Aqueel Ahmed, A.; Ho Lee, C.; Saad Ansari, A.; Pawar, S.M.; Han, J.; Park, S.; Shin, G.; Yeon, S.; Cho, S.; Seol, J.; et al. Hybridized heterostructure of CoS and MoS2 nanoparticles for highly-efficient and robust bifunctional water electrolysis. Appl. Surf. Sci. 2022, 592, 153196. [Google Scholar] [CrossRef]
Catalyst Electrode | Pre-HER Stability | Post-HER Stability | ||
---|---|---|---|---|
Rs (Ω) | Rct (Ω) | Rs (Ω) | Rct (Ω) | |
CS | 0.612 | 29.34 | - | - |
NCOS | 0.503 | 18.17 | 0.516 | 18.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.T.A.; Cho, S.; Im, H.; Jana, A. Enhanced Catalytic Activity of CuO@CuS Core–Shell Structure for Highly Efficient HER Application. Nanomaterials 2024, 14, 1941. https://doi.org/10.3390/nano14231941
Ahmed ATA, Cho S, Im H, Jana A. Enhanced Catalytic Activity of CuO@CuS Core–Shell Structure for Highly Efficient HER Application. Nanomaterials. 2024; 14(23):1941. https://doi.org/10.3390/nano14231941
Chicago/Turabian StyleAhmed, Abu Talha Aqueel, Sangeun Cho, Hyunsik Im, and Atanu Jana. 2024. "Enhanced Catalytic Activity of CuO@CuS Core–Shell Structure for Highly Efficient HER Application" Nanomaterials 14, no. 23: 1941. https://doi.org/10.3390/nano14231941
APA StyleAhmed, A. T. A., Cho, S., Im, H., & Jana, A. (2024). Enhanced Catalytic Activity of CuO@CuS Core–Shell Structure for Highly Efficient HER Application. Nanomaterials, 14(23), 1941. https://doi.org/10.3390/nano14231941