Conversion of PET Bottle Waste into a Terephthalic Acid-Based Metal-Organic Framework for Removing Plastic Nanoparticles from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Conversion of PET into TPA
2.3. Synthesis of MOF-5
2.4. Preparation of Fluorescent Nanoparticles from PVC and PMMA
2.5. Batch Adsorption Studies
2.6. Extraction of Microplastic Particles from Body Scrub Gel Using MOF-5
2.7. Regeneration of the MOF-5 after Adsorption
2.8. Characterization Methods
3. Results and Discussion
3.1. Effect of Time on Adsorption of PNPs
3.2. Effect of Changes in Concentration of MOF-5
3.3. Influence of PNP Concentration on Adsorption Efficiency
3.4. Kinetic Study on the Adsorption of PNPs on MOF Surface
3.5. Determination of the Mechanism of PNP Adsorption on MOF-5
3.6. Regeneration of the MOF-5
3.7. Microplastic Particle Extraction from Body Scrub Gel Using MOF-5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F.F.; Wu, H.W.; Li, J.N.; Liu, J.L.; Xu, Q.J.; An, L.H. Microfiber Releasing into Urban Rivers from Face Masks during COVID-19. J. Environ. Manag. 2022, 319, 115741. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-P.; Huang, X.-H.; Chen, J.-N.; Dong, M.; Zhang, Y.-Y.; Qin, L. Pouring Hot Water through Drip Bags Releases Thousands of Microplastics into Coffee. Food Chem. 2023, 415, 135717. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Huang, X.H.; Wang, Z.K.; Luo, X.Z.; Huang, S.Z.; Zheng, Z. Combined Toxic Effects of Enrofloxacin and Microplastics on Submerged Plants and Epiphytic Biofilms in High Nitrogen and Phosphorus Waters. Chemosphere 2022, 308, 136099. [Google Scholar] [CrossRef] [PubMed]
- van Sebille, E.; Griffies, S.M.; Abernathey, R.; Adams, T.P.; Berloff, P.; Biastoch, A.; Blanke, B.; Chassignet, E.P.; Cheng, Y.; Cotter, C.J.; et al. Lagrangian Ocean Analysis: Fundamentals and Practices. Ocean Model. 2018, 121, 49–75. [Google Scholar] [CrossRef]
- Nabi, I.; Bacha, A.U.R.; Zhang, L. A Review on Microplastics Separation Techniques from Environmental Media. J. Clean. Prod. 2022, 337, 130458. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Ji, Y.; Mei, R.; Chen, Y.; Zhang, Z.; Wang, X.; Chen, L. Polystyrene Nanoplastics Demonstrate High Structural Stability in Vivo: A Comparative Study with Silica Nanoparticles via SERS Tag Labeling. Chemosphere 2022, 300, 134567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Hamidian, A.H.; Tubic, A.; Zhang, Y.; Fang, J.K.H.; Wu, C.X.; Lam, P.K.S. Understanding Plastic Degradation and Microplastic Formation in the Environment: A Review. Environ. Pollut. 2021, 274, 116554. [Google Scholar] [CrossRef] [PubMed]
- Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.J.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y.; et al. Oyster Reproduction Is Affected by Exposure to Polystyrene Microplastics. Proc. Natl. Acad. Sci. USA 2016, 113, 2430–2435. [Google Scholar] [CrossRef]
- urroni, S.; Wright, S.; Rampelli, S.; Brigidi, P.; Zinzani, P.L.; Candela, M. Microplastics Shape the Ecology of the Human Gastrointestinal Intestinal Tract. Curr. Opin. Toxicol. 2021, 28, 32–37. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Nor, N.H.M.; de Ruijter, V.N.; Mintenig, S.M.; Kooi, M. Risk Assessment of Microplastic Particles. Nat. Rev. Mater. 2022, 7, 138–152. [Google Scholar] [CrossRef]
- Yuan, Z.; Nag, R.; Cummins, E. Human Health Concerns Regarding Microplastics in the Aquatic Environment—From Marine to Food Systems. Sci. Total Environ. 2022, 823, 153730. [Google Scholar] [CrossRef]
- Krishnan, R.Y.; Manikandan, S.; Subbaiya, R.; Karmegam, N.; Kim, W.; Govarthanan, M. Recent Approaches and Advanced Wastewater Treatment Technologies for Mitigating Emerging Microplastics Contamination—A Critical Review. Sci. Total Environ. 2023, 858, 159681. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Tian, W.; Yang, Y.; Nie, G.; Zhou, P.; Wang, Y.; Duan, X.; Wang, S. Microplastics Remediation in Aqueous Systems: Strategies and Technologies. Water Res. 2021, 198, 117144. [Google Scholar] [CrossRef]
- Batool, A.; Valiyaveettil, S. Coprecipitation—An Efficient Method for Removal of Polymer Nanoparticles from Water. ACS Sustain. Chem. Eng. 2020, 8, 13481–13487. [Google Scholar] [CrossRef]
- Batool, A.; Valiyaveettil, S. Surface Functionalized Cellulose Fibers—A Renewable Adsorbent for Removal of Plastic Nanoparticles from Water. J. Hazard. Mater. 2021, 413, 125301. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Wang, J. MOF/Graphene Oxide Composite as an Efficient Adsorbent for the Removal of Organic Dyes from Aqueous Solution. Environ. Sci. Pollut. Res. 2018, 25, 5521. [Google Scholar] [CrossRef] [PubMed]
- Setyono, D.; Valiyaveettil, S. Functionalized Paper-A Readily Accessible Adsorbent for Removal of Dissolved Heavy Metal Salts and Nanoparticles from Water. J. Hazard. Mater. 2016, 302, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Setyono, D.; Valiyaveettil, S. Use of Porous Cellulose Microcapsules for Water Treatment. RSC Adv. 2015, 5, 83286–83294. [Google Scholar] [CrossRef]
- Ahmad, A.; Sabir, A.; Iqbal, S.S.; Felemban, B.F.; Riaz, T.; Bahadar, A.; Hossain, N.; Khan, R.U.; Inam, F. Novel Antibacterial Polyurethane and Cellulose Acetate Mixed Matrix Membrane Modified with Functionalized TiO2 Nanoparticles for Water Treatment Applications. Chemosphere 2022, 301, 134711. [Google Scholar] [CrossRef]
- Hou, S.; Huang, Z.-H.; Zhu, T.; Tang, Y.; Sun, Y.; Li, X.; Shen, F. Adsorption Removal of Styrene on C–Cl Grafted Silica Gel Adsorbents. Chemosphere 2023, 315, 137679. [Google Scholar] [CrossRef]
- Kr, M. Hydrothermal Synthesis of Zeolite Aggregate with Potential Use as a Sorbent of Heavy Metal Cations. J. Mol. Struct. 2019, 1183, 353–359. [Google Scholar]
- Lefebvre, L.; Agusti, G.; Bouzeggane, A.; Edouard, D. Adsorption of Dye with Carbon Media Supported on Polyurethane Open Cell Foam. Catal. Today 2018, 301, 98–103. [Google Scholar] [CrossRef]
- Shi, D.; Yek, P.N.Y.; Ge, S.; Shi, Y.; Liew, R.K.; Peng, W.; Sonne, C.; Tabatabaei, M.; Aghbashlo, M.; Lam, S.S. Production of Highly Porous Biochar via Microwave Physiochemical Activation for Dechlorination in Water Treatment. Chemosphere 2022, 309, 136624. [Google Scholar] [CrossRef]
- Sadaghiani, A.K.; Motezakker, A.R.; Kasap, S.; Kaya, I.I.; Koşar, A. Foamlike 3D Graphene Coatings for Cooling Systems Involving Phase Change. ACS Omega 2018, 3, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.-Y.; Huang, S.-C.; Chou, P.-H.; Den, W.; Hou, C.-H. Application of a Multiwalled Carbon Nanotube-Chitosan Composite as an Electrode in the Electrosorption Process for Water Purification. Chemosphere 2016, 146, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Gusain, R.; Kumar, N.; Ray, S.S. Recent Advances in Carbon Nanomaterial-Based Adsorbents for Water Purification. Coord. Chem. Rev. 2020, 405, 213111. [Google Scholar] [CrossRef]
- Mohtasham, H.; Rostami, M.; Gholipour, B.; Sorouri, A.M.; Ehrlich, H.; Ganjali, M.R.; Rostamnia, S.; Rahimi-Nasrabadi, M.; Salimi, A.; Luque, R. Nano-Architecture of MOF (ZIF-67)-Based Co3O4 NPs@N-Doped Porous Carbon Polyhedral Nanocomposites for Oxidative Degradation of Antibiotic Sulfamethoxazole from Wastewater. Chemosphere 2023, 310, 136625. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kaushal, S.; Kaur, J.; Kaur, G.; Mittal, S.K.; Singh, P.P. CaFu MOF as an Efficient Adsorbent for Simultaneous Removal of Imidacloprid Pesticide and Cadmium Ions from Wastewater. Chemosphere 2021, 272, 129648. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Gong, X.; Sun, W.; Yu, C. Advanced Applications of Zr-Based MOFs in the Removal of Water Pollutants. Chemosphere 2021, 267, 128863. [Google Scholar] [CrossRef] [PubMed]
- Behineh, E.S.; Solaimany Nazar, A.R.; Farhadian, M.; Moghadam, M. Photocatalytic Degradation of Cefixime Using Visible Light-Driven Z-Scheme ZnO Nanorod/Zn2TiO4/GO Heterostructure. J. Environ. Manag. 2022, 316, 115195. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, F.; Fuller, R.O.; Maya, F. Fast and Simultaneous Removal of Microplastics and Plastic-Derived Endocrine Disruptors Using a Magnetic ZIF-8 Nanocomposite. Chem. Eng. J. 2023, 455, 140405. [Google Scholar] [CrossRef]
- Vinothkumar, K.; Shivanna Jyothi, M.; Lavanya, C.; Sakar, M.; Valiyaveettil, S.; Balakrishna, R.G. Strongly Co-Ordinated MOF-PSF Matrix for Selective Adsorption, Separation and Photodegradation of Dyes. Chem. Eng. J. 2022, 428, 132561. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chen, Y.; Miao, C.; Wang, Y.R.; Gao, G.K.; Yang, R.X.; Zhu, H.J.; Wang, J.H.; Li, S.L.; Lan, Y.Q. Metal-Organic Framework-Based Foams for Efficient Microplastics Removal. J. Mater. Chem. A 2020, 8, 14644–14652. [Google Scholar] [CrossRef]
- Ma, D.; Li, Z.; Zhu, J.; Zhou, Y.; Chen, L.; Mai, X.; Liufu, M.; Wu, Y.; Li, Y. Inverse and Highly Selective Separation of CO2/C2H2 on a Thulium–Organic Framework. J. Mater. Chem. A 2020, 8, 11933–11937. [Google Scholar] [CrossRef]
- Ke, F.; Pan, A.; Liu, J.; Liu, X.; Yuan, T.; Zhang, C.; Fu, G.; Peng, C.; Zhu, J.; Wan, X. Hierarchical Camellia-like Metal–Organic Frameworks via a Bimetal Competitive Coordination Combined with Alkaline-Assisted Strategy for Boosting Selective Fluoride Removal from Brick Tea. J. Colloid Interface Sci. 2023, 642, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zou, J.; Han, Y.; Liao, Z.; Lu, P.; Nezamzadeh-Ejhieh, A.; Liu, J.; Peng, Y. Recent Advances in Al(Iii)/In(Iii)-Based MOFs for the Detection of Pollutants. New J. Chem. 2022, 46, 19577–19592. [Google Scholar] [CrossRef]
- Ji, C.; Xu, M.; Yu, H.; Lv, L.; Zhang, W. Mechanistic Insight into Selective Adsorption and Easy Regeneration of Carboxyl-Functionalized MOFs towards Heavy Metals. J. Hazard. Mater. 2022, 424, 127684. [Google Scholar] [CrossRef]
- Park, J.M.; Jhung, S.H. A Remarkable Adsorbent for Removal of Bisphenol S from Water: Aminated Metal-Organic Framework, MIL-101-NH2. Chem. Eng. J. 2020, 396, 125224. [Google Scholar] [CrossRef]
- Dong, S.; Xia, J.; Sheng, L.; Wang, W.; Liu, H.; Gao, B. Transport Characteristics of Fragmental Polyethylene Glycol Terephthalate (PET) Microplastics in Porous Media under Various Chemical Conditions. Chemosphere 2021, 276, 130214. [Google Scholar] [CrossRef]
- Nakamura, T.; Kudo, H.; Tsuda, Y.; Matsushima, Y.; Yoshida, T. Electrodeposition of Zn-Co-Terephthalate MOF and Its Conversion to Co-Doped ZnO Thin Films. ECS J. Solid State Sci. Technol. 2021, 10, 057002. [Google Scholar] [CrossRef]
- Clausen, H.F.; Poulsen, R.D.; Bond, A.D.; Chevallier, M.A.S.; Iversen, B.B. Solvothermal Synthesis of New Metal Organic Framework Structures in the Zinc-Terephthalic Acid-Dimethyl Formamide System. J. Solid State Chem. 2005, 178, 3342–3351. [Google Scholar] [CrossRef]
- Bhargava, S.; Chu, J.J.H.; Valiyaveettil, S. Controlled Dye Aggregation in Sodium Dodecylsulfate-Stabilized Poly(Methylmethacrylate) Nanoparticles as Fluorescent Imaging Probes. ACS Omega 2018, 3, 7663–7672. [Google Scholar] [CrossRef] [PubMed]
- Batool, A.; Valiyaveettil, S. Chemical Transformation of Soya Waste into Stable Adsorbent for Enhanced Removal of Methylene Blue and Neutral Red from Water. J. Environ. Chem. Eng. 2021, 9, 104902. [Google Scholar] [CrossRef]
- Ahmad, T.; Liu, X.; Guria, C. Preparation of Polyvinyl Chloride (PVC) Membrane Blended with Acrylamide Grafted Bentonite for Oily Water Treatment. Chemosphere 2023, 310, 136840. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.S.; Farrukh, S.; Matsuura, T.; Ahsan, M.; Hussain, A.; Shakir, S.; Chuah, L.F.; Hasan, M.; Bokhari, A. Model Analysis on Effect of Temperature on the Solubility of Recycling of Polyethylene Terephthalate (PET) Plastic. Chemosphere 2022, 307, 136050. [Google Scholar] [CrossRef]
- Feng, W.; Xiao, X.; Li, J.; Xiao, Q.; Ma, L.; Gao, Q.; Wan, Y.; Huang, Y.; Liu, T.; Luo, X.; et al. Bioleaching and Immobilizing of Copper and Zinc Using Endophytes Coupled with Biochar-Hydroxyapatite: Bipolar Remediation for Heavy Metals Contaminated Mining Soils. Chemosphere 2023, 315, 137730. [Google Scholar] [CrossRef] [PubMed]
- Cosimbescu, L.; Merkel, D.R.; Darsell, J.; Petrossian, G. Simple But Tricky: Investigations of Terephthalic Acid Purity Obtained from Mixed PET Waste. Ind. Eng. Chem. Res. 2021, 60, 12792–12797. [Google Scholar] [CrossRef]
- Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. Metal–Organic Frameworks for Heavy Metal Removal from Water. Coord. Chem. Rev. 2018, 358, 92–107. [Google Scholar] [CrossRef]
- Uddin, M.J.; Ampiaw, R.E.; Lee, W. Adsorptive Removal of Dyes from Wastewater Using a Metal-Organic Framework: A Review. Chemosphere 2021, 284, 131314. [Google Scholar] [CrossRef]
- Lu, H.; Zhu, S. Interfacial Synthesis of Free-Standing Metal-Organic Framework Membranes. Eur. J. Inorg. Chem. 2013, 2013, 1294–1300. [Google Scholar] [CrossRef]
- Hirai, Y.; Furukawa, K.; Sun, H.; Matsushima, Y.; Shito, K.; Masuhara, A.; Ono, R.; Shimbori, Y.; Shiroishi, H.; White, M.S.; et al. Microwave-Assisted Hydrothermal Synthesis of ZnO and Zn-Terephthalate Hybrid Nanoparticles Employing Benzene Dicarboxylic Acids. Microsyst. Technol. 2018, 24, 699–708. [Google Scholar] [CrossRef]
- Mahadevan, G.; Ruifan, Q.; Hian Jane, Y.H.; Valiyaveettil, S. Effect of Polymer Nano- And Microparticles on Calcium Carbonate Crystallization. ACS Omega 2021, 6, 20522–20529. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, X.; Chen, L.; Yang, J.; Wang, Q. High-Performance Non-Enzymatic Glucose Sensor by Hierarchical Flower-like Nickel(II)-Based MOF/Carbon Nanotubes Composite. Mater. Sci. Eng. C 2019, 96, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.W.; Liu, J.M.; Wang, Z.H.; Ma, H.; Li, C.Y.; Zhao, N.; Wang, S. Recent Advances on Porous Organic Frameworks for the Adsorptive Removal of Hazardous Materials. J. Environ. Sci. 2019, 80, 169. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, Y.; Huang, H.; Zhong, C. Flexibility Induced High-Performance MOF-Based Adsorbent for Nitroimidazole Antibiotics Capture. Chem. Eng. J. 2018, 333, 678. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Wei, W.; Chen, H.; Ni, B.J. Removal of Microplastics and Nanoplastics from Urban Waters: Separation and Degradation. Water Res. 2022, 221, 118820. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Li, L.; Shen, S.; Chen, D.; Han, W. Highly Efficient Removal of Pb2+ by a Sandwich Structure of Metal-Organic Framework/GO Composite with Enhanced Stability. New J. Chem. 2019, 43, 1032–1037. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Tajahmadi, S.; Bahi, A.; Molavi, H.; Rezakazemi, M.; Ko, F.; Aminabhavi, T.M.; Arjmand, M. Ethylenediamine-Functionalized Zr-Based MOF for Efficient Removal of Heavy Metal Ions from Water. Chemosphere 2021, 264, 128466. [Google Scholar] [CrossRef]
- Modak, S.; Kasula, M.; Esfahani, M.R. Nanoplastics Removal from Water Using Metal–Organic Framework: Investigation of Adsorption Mechanisms, Kinetics, and Effective Environmental Parameters. ACS Appl. Eng. Mater. 2023, 1, 744–755. [Google Scholar] [CrossRef]
- Feng, L.J.; Li, J.W.; Xu, E.G.; Sun, X.D.; Zhu, F.P.; Ding, Z.J.; Tian, H.Y.; Dong, S.S.; Xia, P.F.; Yuan, X.Z. Short-Term Exposure to Positively Charged Polystyrene Nanoparticles Causes Oxidative Stress and Membrane Destruction in Cyanobacteria. Environ. Sci. 2019, 6, 3072–3079. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, F.; Akakuru, O.U.; Wang, T.; Wang, Z.; Wu, A.; Zhang, Y. Nature-Inspired Polyethylenimine-Modified Calcium Alginate Blended Waterborne Polyurethane Graded Functional Materials for Multiple Water Purification. ACS Appl. Mater. Interfaces 2022, 14, 17826–17836. [Google Scholar] [CrossRef]
- Yen, P.-L.; Hsu, C.-H.; Huang, M.-L.; Liao, V.H.-C. Removal of Nano-Sized Polystyrene Plastic from Aqueous Solutions Using Untreated Coffee Grounds. Chemosphere 2022, 286, 131863. [Google Scholar] [CrossRef]
- Ramirez Arenas, L.; Ramseier Gentile, S.; Zimmermann, S.; Stoll, S. Nanoplastics Adsorption and Removal Efficiency by Granular Activated Carbon Used in Drinking Water Treatment Process. Sci. Total Environ. 2021, 791, 148175. [Google Scholar] [CrossRef]
Polymer Particles | Pseudo-First Order | Pseudo-Second Order | |||||
---|---|---|---|---|---|---|---|
(mg/g) | (1/min) | (mg/g) | (mg/g) | (g/mg min) | |||
PVC NP | 6.615 | 0.479 | 0.972 | 6.555 | 6.702 | 0.039 | 0.996 |
PMMA NP | 10.876 | 0.499 | 0.958 | 11.354 | 12.787 | 0.003 | 0.990 |
Nanoparticles | Langmuir | Freundlich | Temkin | D-R | |
---|---|---|---|---|---|
PVC NPs | Adsorption Constant | KL = 0.008 L/mg Qmax = 56.653 mg/g | Kf = 2.444 L/mg n = 1.066 | b = 231.505 BT = 10.702 J/mol | = 4.354 × |
0.999 | 0.819 | 0.608 | 0.607 | ||
PMMA NPs | Adsorption Constant | KL = 0.003 L/mg Qmax = 33.324 mg/g | Kf = 0.2219 L/mg n = 1.321 | b = 332.230 BT = 7.547 J/mol | = 1.421 × |
0.991 | 0.845 | 0.772 | 0.827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinglenthoiba, C.; Mahadevan, G.; Zuo, J.; Prathyumnan, T.; Valiyaveettil, S. Conversion of PET Bottle Waste into a Terephthalic Acid-Based Metal-Organic Framework for Removing Plastic Nanoparticles from Water. Nanomaterials 2024, 14, 257. https://doi.org/10.3390/nano14030257
Chinglenthoiba C, Mahadevan G, Zuo J, Prathyumnan T, Valiyaveettil S. Conversion of PET Bottle Waste into a Terephthalic Acid-Based Metal-Organic Framework for Removing Plastic Nanoparticles from Water. Nanomaterials. 2024; 14(3):257. https://doi.org/10.3390/nano14030257
Chicago/Turabian StyleChinglenthoiba, Chingakham, Gomathi Mahadevan, Jiawei Zuo, Thiruchelvam Prathyumnan, and Suresh Valiyaveettil. 2024. "Conversion of PET Bottle Waste into a Terephthalic Acid-Based Metal-Organic Framework for Removing Plastic Nanoparticles from Water" Nanomaterials 14, no. 3: 257. https://doi.org/10.3390/nano14030257
APA StyleChinglenthoiba, C., Mahadevan, G., Zuo, J., Prathyumnan, T., & Valiyaveettil, S. (2024). Conversion of PET Bottle Waste into a Terephthalic Acid-Based Metal-Organic Framework for Removing Plastic Nanoparticles from Water. Nanomaterials, 14(3), 257. https://doi.org/10.3390/nano14030257