Structural, Electronic and Vibrational Properties of B24N24 Nanocapsules: Novel Anodes for Magnesium Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometries and Energies
2.2. Electrochemical Reactions and Thermodynamics
2.3. Raman and Optical Absorption Spectra
3. Results and Discussion
3.1. Nanocapsule
3.2. Diatomic Halogen Endonanocapsules
3.3. Diatomic Chalcogen Endonanocapsules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALDA | Adiabatic local density approximation |
BN | Boron nitride |
DFT | Density functional theory |
DFT-D | Dispersion-correction density functional theory |
DOS | Density of states |
GGA | Generalized gradient approximation |
HOMO | Highest occupied molecular orbital |
LIBs | Lithium-ion batteries |
LUMO | Lowest unoccupied molecular orbital |
MIBs | Magnesium-ion batteries |
PBE | Perdew–Burke–Ernzerhof exchange-correlation functional |
TDDFT | Time-dependent density functional theory |
XC | Exchange-correlation |
References
- Jain, A.; Shin, Y.; Persson, K.A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Scrosati, B. History of lithium batteries. J. Solid State Electrochem. 2011, 15, 1623–1630. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, A.; Tsubata, T.; Shimoyamada, M.; Satake, H.; Okano, Y.; Mori, S.; Yata, S. Development of a lithium-type advanced energy storage device. J. Electrochem. Soc. 2004, 151, A2180. [Google Scholar] [CrossRef]
- Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 2017, 10, 1314. [Google Scholar] [CrossRef]
- Ponrouch, A.; Bitenc, J.; Dominko, R.; Lindahl, N.; Johansson, P.; Palacín, M.R. Multivalent rechargeable batteries. Energy Storage Mater. 2019, 20, 253–262. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Wolverton, C.; Isaacs, E.D. Electrical energy storage for transportation approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863. [Google Scholar] [CrossRef]
- Duffner, F.; Wentker, M.; Greenwood, M.; Leker, J. Battery cost modeling: A review and directions for future research. Renew. Sustain. Energy Rev. 2020, 127, 109872. [Google Scholar] [CrossRef]
- Luntz, A. Beyond lithium ion batteries. J. Phys. Chem. Lett. 2015, 6, 300–301. [Google Scholar] [CrossRef] [PubMed]
- Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 2018, 8, 1703137. [Google Scholar] [CrossRef]
- Sharma, S.S.; Manthiram, A. Towards more environmentally and socially responsible batteries. Energy Environ. Sci. 2020, 13, 4087–4097. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, R.; Chen, T.; Lv, H.; Zhu, G.; Ma, L.; Wang, C.; Jin, Z.; Liu, J. Emerging non-lithium ion batteries. Energy Storage Mater. 2016, 4, 103–129. [Google Scholar] [CrossRef]
- Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724–727. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Y.; Zhang, F.; Lee, C.S. A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 2016, 6, 1502588. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, F.; Song, X.; Tang, Y. A novel potassium-ion-based dual-ion battery. Adv. Mater. 2017, 29, 1700519. [Google Scholar] [CrossRef] [PubMed]
- Stievano, L.; de Meatza, I.; Bitenc, J.; Cavallo, C.; Brutti, S.; Navarra, M.A. Emerging calcium batteries. J. Power Sources 2021, 482, 228875. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, C.; Zhang, S.; Song, X.; Tang, Y.; Cheng, H.M. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 2018, 10, 667–672. [Google Scholar] [CrossRef]
- Lu, S.; Yin, Z.; Liao, S.; Yang, B.; Liu, S.; Liu, M.; Yin, l.; Zheng, W. An asymmetric encoder-decoder model for Zn-ion battery lifetime prediction. Energy Rep. 2022, 8, 33–50. [Google Scholar] [CrossRef]
- Aurbach, D.; Gofer, Y.; Lu, Z.; Schechter, A.; Chusid, O.; Gizbar, H.; Cohen, Y.; Ashkenazi, V.; Moshkovich, M.; Turgeman, R.; et al. A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J. Power Sources 2001, 97, 28–32. [Google Scholar] [CrossRef]
- Ehrenberger, S.; Friedrich, H.E. Life-cycle assessment of the recycling of magnesium vehicle components. Jom 2013, 65, 1303–1309. [Google Scholar] [CrossRef]
- You, C.; Wu, X.; Yuan, X.; Chen, Y.; Liu, L.; Zhu, Y.; Fu, L.; Wu, Y.; Guo, Y.G.; van Ree, T. Advances in rechargeable Mg batteries. J. Mater. Chem. 2020, 8, 25601–25625. [Google Scholar] [CrossRef]
- Song, J.; Sahadeo, E.; Noked, M.; Lee, S.B. Mapping the challenges of magnesium battery. J. Phys. Chem. Lett. 2016, 7, 1736–1749. [Google Scholar] [CrossRef] [PubMed]
- Bitenc, J.; Dominko, R. Opportunities and challenges in the development of cathode materials for rechargeable Mg batteries. Front. Chem. 2018, 6, 634. [Google Scholar] [CrossRef]
- Chusid, O.; Gofer, Y.; Gizbar, H.; Vestfrid, Y.; Levi, E.; Aurbach, D.; Riech, I. Solid-state rechargeable magnesium batteries. Adv. Mater. 2003, 15, 627–630. [Google Scholar] [CrossRef]
- Bucur, C.B.; Gregory, T.; Oliver, A.G.; Muldoon, J. Confession of a magnesium battery. J. Phys. Chem. Lett. 2015, 6, 3578–3591. [Google Scholar] [CrossRef] [PubMed]
- Besenhard, J.O.; Winter, M. Advances in battery technology: Rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. Chemphyschem 2002, 3, 155–159. [Google Scholar] [CrossRef]
- Liu, F.; Wang, T.; Liu, X.; Fan, L.Z. Challenges and recent progress on key materials for rechargeable magnesium batteries. Adv. Energy Mater. 2021, 11, 2000787. [Google Scholar] [CrossRef]
- Dominko, R.; Bitenc, J.; Berthelot, R.; Gauthier, M.; Pagot, G.; Di Noto, V. Magnesium batteries: Current picture and missing pieces of the puzzle. J. Power Sources 2020, 478, 229027. [Google Scholar] [CrossRef]
- Levi, E.; Levi, M.D.; Chasid, O.; Aurbach, D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J. Electroceram. 2009, 22, 13–19. [Google Scholar] [CrossRef]
- Bella, F.; De Luca, S.; Fagiolari, L.; Versaci, D.; Amici, J.; Francia, C.; Bodoardo, S. An overview on anodes for magnesium batteries: Challenges towards a promising storage solution for renewables. Nanomaterials 2021, 11, 810. [Google Scholar] [CrossRef]
- Pei, C.; Xiong, F.; Yin, Y.; Liu, Z.; Tang, H.; Sun, R.; An, Q.; Mai, L. Recent progress and challenges in the optimization of electrode materials for rechargeable magnesium batteries. Small 2021, 17, 2004108. [Google Scholar] [CrossRef]
- Deivanayagam, R.; Ingram, B.J.; Shahbazian-Yassar, R. Progress in development of electrolytes for magnesium batteries. Energy Stor. Mater. 2019, 21, 136–153. [Google Scholar] [CrossRef]
- Park, B.; Schaefer, J.L. Polymer electrolytes for magnesium batteries: Forging away from analogs of lithium polymer electrolytes and towards the rechargeable magnesium metal polymer battery. J. Electrochem. Soc. 2020, 167, 070545. [Google Scholar] [CrossRef]
- Shah, R.; Mittal, V.; Matsil, E.; Rosenkranz, A. Magnesium-ion batteries for electric vehicles: Current trends and future perspectives. Adv. Mech. Eng. 2021, 13, 16878140211003398. [Google Scholar] [CrossRef]
- Murray, R.W. Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 2008, 108, 2688–2720. [Google Scholar] [CrossRef] [PubMed]
- Arrigan, D.W. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 2004, 129, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.G.; Scrosati, B.; Tarascon, J.M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Poizot, P.L.S.G.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Gu, Y.; Hui, B.; Yang, X.; Liu, H.; Chen, S.; Cai, R.; Sun, J.; Zhang, X.; Yang, D. Nitrogen and sulfur vacancies in carbon shell to tune charge distribution of Co6Ni3S8 core and boost sodium storage. Adv. Energy Mater. 2020, 10, 1904147. [Google Scholar] [CrossRef]
- Tao, S.; Cai, J.; Cao, Z.; Song, B.; Deng, W.; Liu, Y.; Hou, H.; Zou, G.; Ji, X. Revealing the Valence Evolution of Metal Element in Heterostructures for Ultra-High Power Li-Ion Capacitors. Adv. Energy Mater. 2023, 13, 2301653. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, G.; Deng, X.; Tian, Y.; Xiao, X.; Deng, W.; Hou, H.; Zou, G.; Ji, X. Strongly coupled interfacial engineering inspired by robotic arms enable high-performance sodium-ion capacitors. Adv. Funct. Mater. 2022, 32, 2205453. [Google Scholar] [CrossRef]
- Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, G.; Liu, K.; Cui, Y. Design of complex nanomaterials for energy storage: Past success and future opportunity. Acc. Chem. Res. 2017, 50, 2895–2905. [Google Scholar] [CrossRef]
- Cox, J.T.; Zhang, B. Nanoelectrodes: Recent advances and new directions. Annu. Rev. Anal. Chem. 2012, 5, 253–272. [Google Scholar] [CrossRef]
- Ozoemena, K.I.; Chen, S. Nanomaterials in Advanced Batteries and Supercapacitors; Springer International Publishing: Cham, Switzerland, 2016; p. 423. [Google Scholar]
- Wallace, G.G.; Chen, J.; Mozer, A.J.; Forsyth, M.; MacFarlane, D.R.; Wang, C. Nanoelectrodes: Energy conversion and storage. Mater. Today 2009, 12, 20–27. [Google Scholar] [CrossRef]
- Chen, B.; Humayun, M.; Li, Y.; Zhang, H.; Sun, H.; Wu, Y.; Wang, C. Constructing hierarchical fluffy CoO–Co4N@ NiFe-LDH nanorod arrays for highly effective overall water splitting and urea electrolysis. ACS Sustain. Chem. Eng. 2021, 9, 14180–14192. [Google Scholar] [CrossRef]
- Qin, M.; Chen, L.; Zhang, H.; Humayun, M.; Fu, Y.; Xu, X.; Xue, X.; Wang, C. Achieving highly efficient pH-universal hydrogen evolution by Mott-Schottky heterojunction of Co2P/Co4N. Chem. Eng. J. 2023, 454, 140230. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Zhang, H.; Humayun, M.; Duan, J.; Xu, X.; Bououdina, M.; Wang, C. Elaborately tailored NiCo2O4 for highly efficient overall water splitting and urea electrolysis. Green Chem. 2023, 25, 8181–8195. [Google Scholar] [CrossRef]
- Lusk, M.T.; Mattsson, A.E. High-performance computing for materials design to advance energy science. MRS Bull. 2011, 36, 169–174. [Google Scholar] [CrossRef]
- Correa-Baena, J.P.; Hippalgaonkar, K.; van Duren, J.; Jaffer, S.; Chandrasekhar, V.R.; Stevanovic, V.; Wadia, C.; Guha, S.; Buonassisi, T. Accelerating materials development via automation, machine learning, and high-performance computing. Joule 2018, 2, 1410–1420. [Google Scholar] [CrossRef]
- Pyzer-Knapp, E.O.; Pitera, J.W.; Staar, P.W.; Takeda, S.; Laino, T.; Sanders, D.P.; Sexton, J.; Smith, J.R.; Curioni, A. Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Comput. Mater. 2022, 8, 84. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979–2993. [Google Scholar] [CrossRef]
- Weng, Q.; Wang, X.; Wang, X.; Bando, Y.; Golberg, D. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–4012. [Google Scholar] [CrossRef]
- Pakdel, A.; Zhi, C.; Bando, Y.; Golberg, D. Low-dimensional boron nitride nanomaterials. Mater. Today 2012, 15, 256–265. [Google Scholar] [CrossRef]
- Jiang, X.F.; Weng, Q.; Wang, X.B.; Li, X.; Zhang, J.; Golberg, D.; Bando, Y. Recent progress on fabrications and applications of boron nitride nanomaterials: A review. J. Mater. Sci. Technol. 2015, 31, 589–598. [Google Scholar] [CrossRef]
- Merlo, A.; Mokkapati, V.R.S.S.; Pandit, S.; Mijakovic, I. Boron nitride nanomaterials: Biocompatibility and bio-applications. Biomater. Sci. 2018, 6, 2298–2311. [Google Scholar] [CrossRef] [PubMed]
- Mateti, S.; Sultana, I.; Chen, Y.; Kota, M.; Rahman, M.M. Boron Nitride-Based Nanomaterials: Synthesis and Application in Rechargeable Batteries. Batteries 2023, 9, 344. [Google Scholar] [CrossRef]
- Petrescu, M.I.; Balint, M.G. Structure and properties modifications in boron nitride. Part I: Direct polymorphic transformations mechanisms. UPB Sci. Bull. 2007, 69, 35–42. [Google Scholar]
- Han, R.; Liu, F.; Wang, X.; Huang, M.; Li, W.; Yamauchi, Y.; Sun, X.; Huang, Z. Functionalised hexagonal boron nitride for energy conversion and storage. J. Mater. Chem. 2020, 8, 14384–14399. [Google Scholar] [CrossRef]
- Pu, J.; Zhang, K.; Wang, Z.; Li, C.; Zhu, K.; Yao, Y.; Hong, G. Synthesis and modification of boron nitride nanomaterials for electrochemical energy storage: From theory to application. Adv. Funct. Mater. 2021, 31, 2106315. [Google Scholar] [CrossRef]
- Tang, C.; Bando, Y.; Huang, Y.; Yue, S.; Gu, C.; Xu, F.; Golberg, D. Fluorination and electrical conductivity of BN nanotubes. J. Am. Chem. Soc. 2005, 127, 6552–6553. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.-F.; Huang, S.-P.; Lin, W.; Chen, W.-K. BC2N/graphene heterostructure as a promising anode material for rechargeable Li-ion batteries by density functional calculations. J. Phys. Chem. C 2019, 123, 30809–30818. [Google Scholar] [CrossRef]
- Lei, W.; Qin, S.; Liu, D.; Portehault, D.; Liu, Z.; Chen, Y. Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities. Chem. Commun. 2013, 49, 352–354. [Google Scholar] [CrossRef]
- Kroto, H.W. The stability of the fullerenes C n, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 1987, 329, 529–531. [Google Scholar] [CrossRef]
- Oku, T.; Nishiwaki, A.; Narita, I. Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci. Technol. Adv. Mater. 2004, 5, 635–638. [Google Scholar] [CrossRef]
- Jensen, F.; Toftlund, H. Structure and stability of C24 and B12N12 isomers. Chem. Phys. Lett. 1993, 201, 89–96. [Google Scholar] [CrossRef]
- Strout, D.L. Structure and stability of boron nitrides: Isomers of B12N12. J. Phys. Chem. 2000, 104, 3364–3366. [Google Scholar] [CrossRef]
- Matxain, J.M.; Eriksson, L.A.; Mercero, J.M.; Lopez, X.; Piris, M.; Ugalde, J.M.; Poater, J.; Matito, E.; Solá, M. New solids based on B12N12 fullerenes. J. Phys. Chem. C 2007, 111, 13354–13360. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Zhao, J.; Wang, B.; Wang, G. Stability and magnetic properties of transition metal atoms endohedral BnNn (n = 12–28) cages. J. Chem. Phys. 2008, 128, 084306. [Google Scholar] [CrossRef] [PubMed]
- Yap, Y.K. BCN Nanotubes and Related Nanostructures; Springer Science & Business Media: New York, NY, USA, 2009; Volume 6. [Google Scholar]
- Feng, L.; Lu, Y.; Kong, J.; Su, Z. Theoretical studies on the structure and properties of BN clusters (BN) n and endohedral metallo-BN clusters M@(BN) n. Comput. Theoretic. Chem. 2011, 964, 56–64. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Z.; Wang, Q. Structures, electronic and magnetic properties of transition metal atoms encapsulated in B12N12 cage. Chem. Phys. Lett. 2020, 739, 136922. [Google Scholar] [CrossRef]
- Hosseini, J.; Rastgou, A.; Moradi, R. F-encapsulated B12N12 fullerene as an anode for Li-ion batteries: A theoretical study. J. Mol. Liq. 2017, 225, 913–918. [Google Scholar] [CrossRef]
- Nejati, K.; Hosseinian, A.; Bekhradnia, A.; Vessally, E.; Edjlali, L. Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies. J. Mol. Graph. Model. 2017, 74, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Shakerzadeh, E.; Mirzavand, H.; Mahdavifar, Z. A comparative DFT study on prospective application of C24, Si12C12, B12N12, B12P12, Al12N12, and Al12P12 nanoclusters as suitable anode materials for magnesium-ion batte- ries (MIBs). Phys. E Low-Dimens. Syst. Nanostruct. 2022, 140, 115161. [Google Scholar] [CrossRef]
- Corona, D.; Buonocore, F.; Celino, M.; Pulci, O. BN endofullerenes as anode materials for magnesium-ion batteries: A density functional theory study. Mater. Today Chem. 2023, 32, 101660. [Google Scholar] [CrossRef]
- Wu, H.S.; Xu, X.H.; Zhang, F.Q.; Jiao, H. New boron nitride B24N24 nanotube. J. Phys. Chem. A 2003, 107, 6609–6612. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol 3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Delley, B.; Ellis, D.E. Efficient and accurate expansion methods for molecules in local density models. J. Chem. Phys. 1982, 76, 1949–1960. [Google Scholar] [CrossRef]
- BIOVIA, Dassault Systèmes. Materials Studio 2020; Dassault Systèmes: San Diego, CA, USA, 2019. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Ziesche, P.; Kurth, S.; Perdew, J.P. Density functionals from LDA to GGA. Comput. Mater. Sci. 1998, 11, 122–127. [Google Scholar] [CrossRef]
- Burke, K. Perspective on density functional theory. J. Chem. Phys. 2012, 136, 150901. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Density functional theory with London dispersion corrections. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 211–228. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Van Troeye, B.; Torrent, M.; Gonze, X. Interatomic force constants including the DFT-D dispersion contribution. Phys. Rev. B 2016, 93, 144304. [Google Scholar] [CrossRef]
- Hirano, T.; Tanabe, K. Molecular Orbital MOPAC Guidebook, 2nd ed.; Kaibundo Press: Tokyo, Japan, 1996. [Google Scholar]
- Loudon, R. The Raman effect in crystals. Adv. Phys. 1964, 13, 423–482. [Google Scholar] [CrossRef]
- Porezag, D.; Pederson, M.R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 1996, 54, 7830. [Google Scholar] [CrossRef]
- Ullrich, C.A.; Yang, Z.H. A brief compendium of time-dependent density functional theory. Braz. J. Phys. 2014, 44, 154–188. [Google Scholar] [CrossRef]
- Casida, M.E. Time-dependent density functional response theory for molecules. In Recent Advances In Density Functional Methods: (Part I); World Scientific: Singapore, 1995; pp. 155–192. [Google Scholar]
- Delley, B. Time dependent density functional theory with DMol3. J. Phys. Condens. Matter. 2010, 22, 384208. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.R. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 1975, 17, 87–94. [Google Scholar] [CrossRef]
- Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 1950, 45, 255. [Google Scholar] [CrossRef]
- Er, D.; Detsi, E.; Kumar, H.; Shenoy, V.B. Defective graphene and graphene allotropes as high-capacity anode materials for Mg ion batteries. ACS Energy Lett. 2016, 1, 638–645. [Google Scholar] [CrossRef]
- Jin, W.; Wang, Z.; Fu, Y.Q. Monolayer black phosphorus as potential anode materials for Mg-ion batteries. J. Mater. Sci. 2016, 51, 7355. [Google Scholar] [CrossRef]
- Vakili-Nezhaad, G.R.; Gujarathi, A.M.; Al Rawahi, N.; Mohammadi, M. Performance of WS2 monolayers as a new family of anode materials for metal-ion (Mg, Al and Ca) batteries. Mater. Chem. Phys. 2019, 230, 114. [Google Scholar] [CrossRef]
- Ponti, G.; Palombi, F.; Abate, D.; Ambrosino, F.; Aprea, G.; Bastianelli, T.; Beone, F.; Bertini, R.; Bracco, G.; Caporicci, M.; et al. The role of medium size facilities in the HPC ecosystem: The case of the new CRESCO4 cluster integrated in the ENEAGRID infrastructure. In Proceedings of the 2014 International Conference on High Performance Computing & Simulation (HPCS), Bologna, Italy, 21–25 July 2014; pp. 1030–1033. [Google Scholar]
Capsule | (eV) | (eV) | (V) | (kcal/mol) | (eV/atom) |
---|---|---|---|---|---|
- | 4.261 | - | −156.1 | −0.48 | |
@ | +0.27 | 2.369 | - | - | - |
@ | −6.50 | 0.285 | 3.38 | - | - |
/ | - | 1.473 | - | −140.2 | −0.40 |
/@ | −0.41 | 0.067 | - | - | - |
/@ | −6.58 | 0.289 | 3.04 | - | - |
/ | - | 1.671 | - | −146.7 | −0.37 |
/@ | −0.19 | 0.169 | - | - | - |
/@ | −6.58 | 0.360 | 3.18 | - | - |
/ | - | 2.184 | - | −166.7 | −0.29 |
/@ | +0.11 | 0.851 | - | - | - |
/@ | −7.24 | 0.136 | 3.61 | - | - |
/ | - | 0.004 | - | −150.0 | −0.42 |
/@ | −0.49 | 0.081 | - | - | - |
/@ | −6.94 | 0.120 | 3.25 | - | - |
/ | - | 0.037 | - | −161.6 | −0.38 |
/@ | −0.43 | 2.272 | - | - | - |
/@ | −7.43 | 0.086 | 3.50 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corona, D.; Buonocore, F.; Bechstedt, F.; Celino, M.; Pulci, O. Structural, Electronic and Vibrational Properties of B24N24 Nanocapsules: Novel Anodes for Magnesium Batteries. Nanomaterials 2024, 14, 271. https://doi.org/10.3390/nano14030271
Corona D, Buonocore F, Bechstedt F, Celino M, Pulci O. Structural, Electronic and Vibrational Properties of B24N24 Nanocapsules: Novel Anodes for Magnesium Batteries. Nanomaterials. 2024; 14(3):271. https://doi.org/10.3390/nano14030271
Chicago/Turabian StyleCorona, Domenico, Francesco Buonocore, Friedhelm Bechstedt, Massimo Celino, and Olivia Pulci. 2024. "Structural, Electronic and Vibrational Properties of B24N24 Nanocapsules: Novel Anodes for Magnesium Batteries" Nanomaterials 14, no. 3: 271. https://doi.org/10.3390/nano14030271
APA StyleCorona, D., Buonocore, F., Bechstedt, F., Celino, M., & Pulci, O. (2024). Structural, Electronic and Vibrational Properties of B24N24 Nanocapsules: Novel Anodes for Magnesium Batteries. Nanomaterials, 14(3), 271. https://doi.org/10.3390/nano14030271