Flame Spray Pyrolysis Synthesis of Vo-Rich Nano-SrTiO3-x
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Reduced SrTiO3-x by Anoxic Flame Spray Pyrolysis (A-FSP)
2.1.1. Radial-CH4 Anoxic Flame Spray Pyrolysis (RA-FSP)
2.1.2. Axial CH4 Anoxic Flame Spray Pyrolysis (AA-FSP)
2.2. Structural Characterization of Materials
3. Results
Phonon Branch | Assignment | Raman Shift (cm−1) | Raman Shift (cm−1) (Literature) |
---|---|---|---|
TO1 or SrCO3 | Ti-O-Ti or SrCO3 | 147 | 149 [38], 149 [39] |
LO1, TO2 | O-Sr-O | 182 | 178 [38], 177 [39], 180 [43],190 [44] |
TO3, LO3 | O-Sr-O | 257 | 271 [38], 289 [39], 274 [43], 250–348 [44] |
311 | |||
357 | |||
LO2 | 472 | 482 [39] | |
TO4 | Ti-O-Ti | 544 | 543 [38], 545 [39], 546 [43], 539 [44] |
622 | 730 [39], (591, 655, 713) [43], 621–718 [44], (617, 667, 722) [45] | ||
683 | |||
723 | |||
LO4 | Ti-O | 793 | 795 [38], 795 [39], 803 [43], 786 [44] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, B.; Zhou, G.; Sun, L.; Zhao, H.; Chen, Y.; Yang, F.; Zhao, Y.; Song, Q. ABO3 Multiferroic Perovskite Materials for Memristive Memory and Neuromorphic Computing. Nanoscale Horiz. 2021, 6, 939–970. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, W.; Dec, J.; Tkach, A.; Vilarinho, P.M. SrTiO3—Glimpses of an Inexhaustible Source of Novel Solid State Phenomena. Condens. Matter 2020, 5, 58. [Google Scholar] [CrossRef]
- Maiorov, B.; Baily, S.A.; Zhou, H.; Ugurlu, O.; Kennison, J.A.; Dowden, P.C.; Holesinger, T.G.; Foltyn, S.R.; Civale, L. Synergetic Combination of Different Types of Defect to Optimize Pinning Landscape Using BaZrO3-Doped YBa2Cu3O7. Nature Mater. 2009, 8, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Park, N.-G. Perovskite Solar Cells: From Materials to Devices. Small 2015, 11, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.; tul Ain, Q.; Zaman, M.; Aslam, M.Z.; Kousar, N.; Asim, M.; Rafique, M.; Siraj, K.; Tabish, A.N.; Usman, M.; et al. Photocatalysis and Perovskite Oxide-Based Materials: A Remedy for a Clean and Sustainable Future. RSC Adv. 2022, 12, 7009–7039. [Google Scholar] [CrossRef]
- Phoon, B.L.; Lai, C.W.; Juan, J.C.; Show, P.; Chen, W. A Review of Synthesis and Morphology of SrTiO3 for Energy and Other Applications. Int. J. Energy Res. 2019, 43, 5151–5174. [Google Scholar] [CrossRef]
- Suárez-Vázquez, S.I.; Gil, S.; García-Vargas, J.M.; Cruz-López, A.; Giroir-Fendler, A. Catalytic Oxidation of Toluene by SrTi1-XBXO3 (B = Cu and Mn) with Dendritic Morphology Synthesized by One Pot Hydrothermal Route. Appl. Catal. B Environ. 2018, 223, 201–208. [Google Scholar] [CrossRef]
- Moos, R.; Hardtl, K.H. Defect Chemistry of Donor-Doped and Undoped Strontium Titanate Ceramics between 1000° and 1400 °C. J. Am. Ceram. Soc. 2005, 80, 2549–2562. [Google Scholar] [CrossRef]
- Opoku, F.; Govender, K.K.; van Sittert, C.G.C.E.; Govender, P.P. Enhancing Charge Separation and Photocatalytic Activity of Cubic SrTiO3 with Perovskite-Type Materials MTaO3 (M=Na, K) for Environmental Remediation: A First-Principles Study. ChemistrySelect 2017, 2, 6304–6316. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, N.; Xu, S.; Li, Z.; Liu, X.; Cheng, T.; Han, A.; Lv, H.; Sun, W.; Hou, Y. Towards High Visible Light Photocatalytic Activity in Rare Earth and N Co-Doped SrTiO3: A First Principles Evaluation and Prediction. RSC Adv. 2017, 7, 16282–16289. [Google Scholar] [CrossRef]
- Chen, H.-C.; Huang, C.-W.; Wu, J.C.S.; Lin, S.-T. Theoretical Investigation of the Metal-Doped SrTiO3 Photocatalysts for Water Splitting. J. Phys. Chem. C 2012, 116, 7897–7903. [Google Scholar] [CrossRef]
- Wang, J.; Wang, T.; Zhao, Z.; Wang, R.; Wang, C.; Zhou, F.; Li, S.; Zhao, L.; Feng, M. Regulation of Oxygen Vacancies in SrTiO3 Perovskite for Efficient Photocatalytic Nitrogen Fixation. J. Alloys Compd. 2022, 902, 163865. [Google Scholar] [CrossRef]
- Ura, B.; Trawczyński, J.; Kotarba, A.; Bieniasz, W.; Illán-Gómez, M.J.; Bueno-López, A.; López-Suárez, F.E. Effect of Potassium Addition on Catalytic Activity of SrTiO3 Catalyst for Diesel Soot Combustion. Appl. Catal. B Environ. 2011, 101, 169–175. [Google Scholar] [CrossRef]
- Niishiro, R.; Tanaka, S.; Kudo, A. Hydrothermal-Synthesized SrTiO3 Photocatalyst Codoped with Rhodium and Antimony with Visible-Light Response for Sacrificial H2 and O2 Evolution and Application to Overall Water Splitting. Appl. Catal. B Environ. 2014, 150–151, 187–196. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, Z.; Zhu, W.; Coker, E.N.; Li, B.; Zheng, M.; Yu, W.; Fan, H.; Sun, Z. Oxygen Vacancy Enhanced Photocatalytic Activity of Pervoskite SrTiO3. ACS Appl. Mater. Interfaces 2014, 6, 19184–19190. [Google Scholar] [CrossRef] [PubMed]
- Deligiannakis, Y.; Mantzanis, A.; Zindrou, A.; Smykala, S.; Solakidou, M. Control of Monomeric Vo’s Versus Vo Clusters in ZrO2−x for Solar-Light H2 Production from H2O at High-Yield (Millimoles gr−1 h−1). Sci Rep 2022, 12, 15132. [Google Scholar] [CrossRef]
- Li, C.-Q.; Yi, S.-S.; Chen, D.; Liu, Y.; Li, Y.-J.; Lu, S.-Y.; Yue, X.-Z.; Liu, Z.-Y. Oxygen Vacancy Engineered SrTiO3 Nanofibers for Enhanced Photocatalytic H2 Production. J. Mater. Chem. A 2019, 7, 17974–17980. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, Y.; Cui, H.; Wang, W.; Shang, Q.; Shi, X.; Cui, G.; Tang, B. Photocatalytic Overall Water Splitting by SrTiO3 with Surface Oxygen Vacancies. Nanomaterials 2020, 10, 2572. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Fang, F.; Xie, Z.; Lin, H.; Zhang, K.; Yu, X.; Chang, K. La,Al-Codoped SrTiO3 as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering. ACS Catal. 2021, 11, 11429–11439. [Google Scholar] [CrossRef]
- Dimitriou, C.; Psathas, P.; Solakidou, M.; Deligiannakis, Y. Advanced Flame Spray Pyrolysis (FSP) Technologies for Engineering Multifunctional Nanostructures and Nanodevices. Nanomaterials 2023, 13, 3006. [Google Scholar] [CrossRef]
- Psathas, P.; Solakidou, M.; Mantzanis, A.; Deligiannakis, Y. Flame Spray Pyrolysis Engineering of Nanosized Mullite-Bi2Fe4O9 and Perovskite-BiFeO3 as Highly Efficient Photocatalysts for O2 Production from H2O Splitting. Energies 2021, 14, 5235. [Google Scholar] [CrossRef]
- Psathas, P.; Moularas, C.; Smykała, S.; Deligiannakis, Y. Highly Crystalline Nanosized NaTaO3/NiO Heterojunctions Engineered by Double-Nozzle Flame Spray Pyrolysis for Solar-to-H2 Conversion: Toward Industrial-Scale Synthesis. ACS Appl. Nano Mater. 2023, 6, 2658–2671. [Google Scholar] [CrossRef]
- Yuan, X.; Meng, L.; Zheng, C.; Zhao, H. Deep Insight into the Mechanism of Catalytic Combustion of CO and CH4 over SrTi1-xBxO3 (B = Co, Fe, Mn, Ni, and Cu) Perovskite via Flame Spray Pyrolysis. ACS Appl. Mater. Interfaces 2021, 13, 52571–52587. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Meng, L.; Xu, Z.; Zheng, C.; Zhao, H. CuO Quantum Dots Supported by SrTiO3 Perovskite Using the Flame Spray Pyrolysis Method: Enhanced Activity and Excellent Thermal Resistance for Catalytic Combustion of CO and CH4. Environ. Sci. Technol. 2021, 55, 14080–14086. [Google Scholar] [CrossRef] [PubMed]
- Psathas, P.; Zindrou, A.; Papachristodoulou, C.; Boukos, N.; Deligiannakis, Y. In Tandem Control of La-Doping and CuO-Heterojunction on SrTiO3 Perovskite by Double-Nozzle Flame Spray Pyrolysis: Selective H2 vs. CH4 Photocatalytic Production from H2O/CH3OH. Nanomaterials 2023, 13, 482. [Google Scholar] [CrossRef] [PubMed]
- Zindrou, A.; Belles, L.; Solakidou, M.; Boukos, N.; Deligiannakis, Y. Non-Graphitized Carbon/Cu2O/Cu0 Nanohybrids with Improved Stability and Enhanced Photocatalytic H2 Production. Sci. Rep. 2023, 13, 13999. [Google Scholar] [CrossRef]
- Fragou, F.; Zindrou, A.; Deligiannakis, Y.; Louloudi, M. Carbon–SiO2 Hybrid Nanoparticles with Enhanced Radical Stabilization and Biocide Activity. ACS Appl. Nano Mater. 2023, 6, 20841–20854. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Amal, R.; Mädler, L. Flame Spray Pyrolysis: An Enabling Technology for Nanoparticles Design and Fabrication. Nanoscale 2010, 2, 1324. [Google Scholar] [CrossRef]
- Zindrou, A.; Deligiannakis, Y. Quantitative In Situ Monitoring of Cu-Atom Release by Cu2O Nanocatalysts under Photocatalytic CO2 Reduction Conditions: New Insights into the Photocorrosion Mechanism. Nanomaterials 2023, 13, 1773. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi (B) 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Koirala, R.; Pratsinis, S.E.; Baiker, A. Synthesis of Catalytic Materials in Flames: Opportunities and Challenges. Chem. Soc. Rev. 2016, 45, 3053–3068. [Google Scholar] [CrossRef]
- Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324. [Google Scholar] [CrossRef]
- Aljishi, S.; Cohen, J.D.; Jin, S.; Ley, L. Band Tails in Hydrogenated Amorphous Silicon and Silicon-Germanium Alloys. Phys. Rev. Lett. 1990, 64, 2811–2814. [Google Scholar] [CrossRef] [PubMed]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Petzelt, J.; Ostapchuk, T.; Gregora, I.; Rychetský, I.; Hoffmann-Eifert, S.; Pronin, A.V.; Yuzyuk, Y.; Gorshunov, B.P.; Kamba, S.; Bovtun, V.; et al. Dielectric, Infrared, and Raman Response of Undoped SrTiO3 Ceramics: Evidence of Polar Grain Boundaries. Phys. Rev. B 2001, 64, 184111. [Google Scholar] [CrossRef]
- Da Silva, L.F.; Avansi, W.; Andrés, J.; Ribeiro, C.; Moreira, M.L.; Longo, E.; Mastelaro, V.R. Long-Range and Short-Range Structures of Cube-like Shape SrTiO3 Powders: Microwave-Assisted Hydrothermal Synthesis and Photocatalytic Activity. Phys. Chem. Chem. Phys. 2013, 15, 12386. [Google Scholar] [CrossRef] [PubMed]
- Deltreggia, L.A.; Bernardi, M.I.B.; Mesquita, A. Influence of La Substitution on Local Structural and Photoluminescence Properties of SrTiO3:Pr Phosphor. Scr. Mater. 2018, 157, 15–18. [Google Scholar] [CrossRef]
- Du, Y.L.; Chen, G.; Zhang, M.S. Investigation of Structural Phase Transition in Polycrystalline SrTiO3 Thin Films by Raman Spectroscopy. Solid State Commun. 2004, 130, 577–580. [Google Scholar] [CrossRef]
- Kleemann, W.; Albertini, A.; Kuss, M.; Lindner, R. Optical Detection of Symmetry Breaking on a Nanoscale in SrTiO3:Ca. Ferroelectrics 1997, 203, 57–74. [Google Scholar] [CrossRef]
- Akimov, I.A.; Sirenko, A.A.; Clark, A.M.; Hao, J.-H.; Xi, X.X. Electric-Field-Induced Soft-Mode Hardening in SrTiO3 Films. Phys. Rev. Lett. 2000, 84, 4625–4628. [Google Scholar] [CrossRef] [PubMed]
- Hadj Youssef, A.; Zhang, J.; Ehteshami, A.; Kolhatkar, G.; Dab, C.; Berthomieu, D.; Merlen, A.; Légaré, F.; Ruediger, A. Symmetry-Forbidden-Mode Detection in SrTiO3 Nanoislands with Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2021, 125, 6200–6208. [Google Scholar] [CrossRef]
- Gu, L.; Wei, H.; Peng, Z.; Wu, H. Defects Enhanced Photocatalytic Performances in SrTiO3 Using Laser-Melting Treatment. J. Mater. Res. 2017, 32, 748–756. [Google Scholar] [CrossRef]
- Wu, X.; Wu, D.; Liu, X. Negative Pressure Effects in SrTiO3 Nanoparticles Investigated by Raman Spectroscopy. Solid State Commun. 2008, 145, 255–258. [Google Scholar] [CrossRef]
- Moreira, M.L.; Longo, V.M.; Avansi, W., Jr.; Ferrer, M.M.; Andrés, J.; Mastelaro, V.R.; Varela, J.A.; Longo, É. Quantum Mechanics Insight into the Microwave Nucleation of SrTiO3 Nanospheres. J. Phys. Chem. C 2012, 116, 24792–24808. [Google Scholar] [CrossRef]
- Hlinka, J.; Petzelt, J.; Kamba, S.; Noujni, D.; Ostapchuk, T. Infrared Dielectric Response of Relaxor Ferroelectrics. Phase Transit. 2006, 79, 41–78. [Google Scholar] [CrossRef]
- Toulouse, J.; DiAntonio, P.; Vugmeister, B.E.; Wang, X.M.; Knauss, L.A. Precursor Effects and Ferroelectric Macroregions in KTa1-xNbxO3 and K1-yLiyTaO3. Phys. Rev. Lett. 1992, 68, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.-C.; Chen, Y.-C.; He, J.-L.; Ou, S.-L.; Horng, R.-H.; Wuu, D.-S. Tunability of P- and n-Channel TiOx Thin Film Transistors. Sci. Rep. 2018, 8, 9255. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Sahdan, M.Z.; Nayan, N.; Embong, Z.; Hak, C.R.C.; Adriyanto, F. Neutron Beam Interaction with Rutile TiO2 Single Crystal (1 1 1): Raman and XPS Study on Ti3+-Oxygen Vacancy Formation. Mater. Lett. 2020, 263, 127143. [Google Scholar] [CrossRef]
- Bi, X.; Du, G.; Kalam, A.; Sun, D.; Yu, Y.; Su, Q.; Xu, B.; Al-Sehemi, A.G. Tuning Oxygen Vacancy Content in TiO2 Nanoparticles to Enhance the Photocatalytic Performance. Chem. Eng. Sci. 2021, 234, 116440. [Google Scholar] [CrossRef]
- Yu, W.; Ou, G.; Si, W.; Qi, L.; Wu, H. Defective SrTiO3 Synthesized by Arc-Melting. Chem. Commun. 2015, 51, 15685–15688. [Google Scholar] [CrossRef]
- Sun, T.; Lu, M. Band-Structure Modulation of SrTiO3 by Hydrogenation for Enhanced Photoactivity. Appl. Phys. A 2012, 108, 171–175. [Google Scholar] [CrossRef]
- Li, W.; Liu, S.; Wang, S.; Guo, Q.; Guo, J. The Roles of Reduced Ti Cations and Oxygen Vacancies in Water Adsorption and Dissociation on SrTiO3 (110). J. Phys. Chem. C 2014, 118, 2469–2474. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, M.; Yang, Z.; Duan, X.; Jiang, G.; Li, G.; Zhang, F.; Hao, Z. Oxygen Vacancy-Engineered Titanium-Based Perovskite for Boosting H2O Activation and Lower-Temperature Hydrolysis of Organic Sulfur. Proc. Natl. Acad. Sci. USA 2023, 120, e2217148120. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.-Y.; Duy, L.T.; Lee, S.Y.; Seo, H. Aluminum Doping for Optimization of Ultrathin and High-k Dielectric Layer Based on SrTiO3. J. Mater. Sci. Technol. 2020, 42, 28–37. [Google Scholar] [CrossRef]
- Gomez-Martin, A.; Schnepp, Z.; Ramirez-Rico, J. Structural Evolution in Iron-Catalyzed Graphitization of Hard Carbons. Chem. Mater. 2021, 33, 3087–3097. [Google Scholar] [CrossRef]
Nanomaterial | Sheath Gas (L min−1) | P/D | Axial CH4 (L min−1) | Radial CH4 (L min−1) |
---|---|---|---|---|
Pristine STO | O2: 10 | 5/5 | - | - |
STO-R3 | N2: 5 | » | - | 3 |
STO-R5 | N2: 5 | » | - | 5 |
STO-A1 | N2: 10 | » | 1 | - |
STO-A2 | N2: 10 | » | 2 | - |
Nanomaterial | dXRD (nm) | dBET (nm) | SSA (m2 g−1) (±0.5) | Band Gap (Eg) (eV) (±0.05) |
---|---|---|---|---|
Pristine STO | 45 ± 0.5 | 36 ± 0.5 | 32.3 | 3.17 |
STO-R3 | 41 ± 0.5 | 53 ± 0.5 | 22.2 | 3.23 |
STO-R5 | 58 ± 0.5 | 68 ± 0.5 | 17.4 | 3.22 |
STO-A1 | 43 ± 0.5 | 110 ± 0.5 | 10.7 | 3.19 |
STO-A2 | 54 ± 0.5 | 96 ± 0.5 | 12.2 | 3.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zindrou, A.; Psathas, P.; Deligiannakis, Y. Flame Spray Pyrolysis Synthesis of Vo-Rich Nano-SrTiO3-x. Nanomaterials 2024, 14, 346. https://doi.org/10.3390/nano14040346
Zindrou A, Psathas P, Deligiannakis Y. Flame Spray Pyrolysis Synthesis of Vo-Rich Nano-SrTiO3-x. Nanomaterials. 2024; 14(4):346. https://doi.org/10.3390/nano14040346
Chicago/Turabian StyleZindrou, Areti, Pavlos Psathas, and Yiannis Deligiannakis. 2024. "Flame Spray Pyrolysis Synthesis of Vo-Rich Nano-SrTiO3-x" Nanomaterials 14, no. 4: 346. https://doi.org/10.3390/nano14040346
APA StyleZindrou, A., Psathas, P., & Deligiannakis, Y. (2024). Flame Spray Pyrolysis Synthesis of Vo-Rich Nano-SrTiO3-x. Nanomaterials, 14(4), 346. https://doi.org/10.3390/nano14040346