Energy Storage Performance of Electrode Materials Derived from Manganese Metal–Organic Frameworks
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Synthesized and Thermally Treated Mn-MOFs
3.2. Electrochemical Properties of Synthesized and Thermally Treated Mn-MOFs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sust. Energ. Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications; Taylor & Francis: Abingdon, UK, 2013. [Google Scholar]
- Dubal, D.P.; Ayyad, O.; Ruiz, V.; Gomez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790. [Google Scholar] [CrossRef] [PubMed]
- Trasatti, S.; Kurzweil, P. Electrochemical supercapacitors as versatile energy stores. Platin. Met. Rev. 1994, 38, 46–56. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatti, T. A review on electrochemical double-layer capacitors. Energ. Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sust. Energ. Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Zhu, X. Recent advances of transition metal oxides and chalcogenides in pseudo-capacitors and hybrid capacitors: A review of structures, synthetic strategies, and mechanism studies. J. Energy Storge 2022, 49, 104148. [Google Scholar] [CrossRef]
- An, C.; Zhang, Y.; Guo, H.; Wang, Y. Metal oxide-based supercapacitors: Progress and prospectives. Nanoscale Adv. 2019, 1, 4644–4658. [Google Scholar] [CrossRef]
- Parveen, N.; Ansari, S.A.; Ansari, M.Z.; Ansari, M.O. Manganese oxide as an effective electrode material for energy storage: A review. Environ. Chem. Lett. 2022, 20, 283–309. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, Y.; Wang, J. Manganese-oxide-based electrode materials for energy storage applications: How close are we to the theoretical capacitance? Adv. Mater. 2018, 30, 1802569. [Google Scholar] [CrossRef]
- Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728. [Google Scholar] [CrossRef]
- Gu, X.; Yue, J.; Li, L.; Xue, H.; Yang, J.; Zhao, X. General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes. Electrochim. Acta 2015, 184, 250–256. [Google Scholar] [CrossRef]
- Wei, W.; Cui, X.; Chen, W.; Ivey, D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, J.; Wang, T.; Shao, J.; Wang, D.; Yang, Y.-W. Mesoporous transition metal oxides for supercapacitors. Nanomaterials 2015, 5, 1667–1689. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- Silva, A.R.; Alexandre, J.Y.; Souza, J.E.; Neto, J.G.L.; de Sousa Júnior, P.G.; Rocha, M.V.; Dos Santos, J.C. The chemistry and applications of metal–organic frameworks (MOFs) as industrial enzyme immobilization systems. Molecules 2022, 27, 4529. [Google Scholar] [CrossRef] [PubMed]
- James, S.L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef]
- Xu, X.; Sun, H.; Jiang, S.P.; Shao, Z. Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 2021, 1, 460–481. [Google Scholar] [CrossRef]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal–organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef]
- Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. 2006, 118, 6120–6124. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, A.; Zhong, M.; Zhang, Z.; Zhang, X.; Zhou, Z.; Bu, X.-H. Metal–organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2019, 2, 29–104. [Google Scholar] [CrossRef]
- Calbo, J.; Golomb, M.J.; Walsh, A. Redox-active metal–organic frameworks for energy conversion and storage. J. Mater. Chem. A 2019, 7, 16571–16597. [Google Scholar] [CrossRef]
- Xue, Y.; Zheng, S.; Xue, H.; Pang, H. Metal–organic framework composites and their electrochemical applications. J. Mater. Chem. A 2019, 7, 7301–7327. [Google Scholar] [CrossRef]
- Mehtab, T.; Yasin, G.; Arif, M.; Shakeel, M.; Korai, R.M.; Nadeem, M.; Muhammad, N.; Lu, X. Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. J. Energy Storage 2019, 21, 632–646. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Kaneti, Y.V.; Yamauchi, Y. Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects. ACS Nano 2017, 11, 5293–5308. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, Y.; Zhang, X.; Zhang, S.; Xue, H.; Pang, H. MOF derived metal oxide composites and their applications in energy storage. Coord. Chem. Rev. 2023, 477, 214949. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Sun, L.; Wang, L. Metal/metal oxide nanostructures derived from metal–organic frameworks. RSC Adv. 2015, 5, 7267–7279. [Google Scholar] [CrossRef]
- Raj, B.G.S.; Asiri, A.M.; Wu, J.J.; Anandan, S. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J. Alloys Compd. 2015, 636, 234–240. [Google Scholar]
- Dawadi, S.; Gupta, A.; Khatri, M.; Budhathoki, B.; Lamichhane, G.; Parajuli, N. Manganese dioxide nanoparticles: Synthesis, application and challenges. Bull. Mater. Sci. 2020, 43, 277. [Google Scholar] [CrossRef]
- Pandit, B.; Goda, E.S.; Elella, M.H.A.; ur Rehman, A.; Hong, S.E.; Rondiya, S.R.; Barkataki, P.; Shaikh, S.F.; Al-Enizi, A.M.; El-Bahy, S.M. One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors. J. Energy Chem. 2022, 65, 116–126. [Google Scholar] [CrossRef]
- Li, W.; Shao, J.; Liu, Q.; Liu, X.; Zhou, X.; Hu, J. Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochim. Acta 2015, 157, 108–114. [Google Scholar] [CrossRef]
- Teli, A.M.; Beknalkar, S.A.; Patil, D.S.; Pawar, S.A.; Dubal, D.P.; Burute, V.Y.; Dongale, T.D.; Shin, J.C.; Patil, P.S. Effect of annealing temperature on charge storage kinetics of an electrospun deposited manganese oxide supercapacitor. Appl. Surf. Sci. 2020, 511, 145466. [Google Scholar] [CrossRef]
- Zhou, J.-E.; Xu, Z.; Li, Y.; Lin, X.; Wu, Y.; Zeb, A.; Zhang, S. Oxygen-deficient metal–organic framework derivatives for advanced energy storage: Multiscale design, application, and future development. Coord. Chem. Rev. 2023, 494, 215348. [Google Scholar] [CrossRef]
- Sahoo, S.; Kumar, R.; Dhakal, G.; Shim, J.-J. Recent advances in synthesis of metal-organic frameworks (MOFs)-derived metal oxides and its composites for electrochemical energy storage applications. J. Energy Storge 2023, 74, 109427. [Google Scholar] [CrossRef]
- Berry, C.C.; Curtis, A.S. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R198. [Google Scholar] [CrossRef]
- Sundriyal, S.; Mishra, S.; Deep, A. Study of manganese-1, 4-benzenedicarboxylate metal organic framework electrodes based solid state symmetrical supercapacitor. Energy Procedia 2019, 158, 5817–5824. [Google Scholar] [CrossRef]
- Kohler, T.; Armbruster, T.; Libowitzky, E. Hydrogen bonding and Jahn–Teller distortion in groutite, α-MnOOH, and manganite, γ-MnOOH, and their relations to the manganese dioxides ramsdellite and pyrolusite. J. Solid. State Chem. 1997, 133, 486–500. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Mohandes, F.; Davar, F.; Saberyan, K. Fabrication of chain-like Mn2O3 nanostructures via thermal decomposition of manganese phthalate coordination polymers. Appl. Surf. Sci. 2009, 256, 1476–1480. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; He, G.; Deng, Y. Synthesis of polyaniline nanotubes using Mn2O3 nanofibers as oxidant and their ammonia sensing properties. Synth. Met. 2011, 161, 56–61. [Google Scholar] [CrossRef]
- Asheghhosseini, A.; Zolgharnein, J. Iron terephthalate metal–organic framework (MOF-235) as an efficient adsorbent for removal of toluidine blue dye from aqueous solution using Box–Behnken design as multivariate optimization approach. J. Iran. Chem. Soc. 2020, 17, 2663–2673. [Google Scholar] [CrossRef]
- Kartal, L.; Kiliç, Y.; Timur, S. Synthesis of nano-manganese oxide (Mn2O3) particles by using high frequency-induction system. In Proceedings of the 17th International Metallurgy & Materials Congress (IMMC 2014), İstanbul, Türkiye, 11–13 September 2014. [Google Scholar]
- Motlagh, M.M.; Hassanzadeh-Tabrizi, S.; Saffar-Teluri, A. Influence of Mn2O3 content on the textural and catalytic properties of Mn2O3/Al2O3/SiO2 nanocatalyst. Ceram. Int. 2014, 40, 16177–16181. [Google Scholar] [CrossRef]
- Hou, H.; Li, J.; Lan, J.; Chen, F.; Huang, B. Porous walnut-like Mn2O3 anode derived from the waste graphene production effluent. J. Porous Mater. 2022, 29, 837–847. [Google Scholar] [CrossRef]
- Gil, A.; Gandía, L.; Korili, S. Effect of the temperature of calcination on the catalytic performance of manganese-and samarium-manganese-based oxides in the complete oxidation of acetone. Appl. Catal. A-Gen. 2004, 274, 229–235. [Google Scholar] [CrossRef]
- Augustin, M.; Fenske, D.; Bardenhagen, I.; Westphal, A.; Knipper, M.; Plaggenborg, T.; Kolny-Olesiak, J.; Parisi, J. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence. Beilstein J. Nanotechnol. 2015, 6, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Ragupathy, P.; Park, D.H.; Campet, G.; Vasan, H.; Hwang, S.-J.; Choy, J.-H.; Munichandraiah, N. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J. Phys. Chem. C 2009, 113, 6303–6309. [Google Scholar] [CrossRef]
- Chen, H.; Dong, X.; Shi, J.; Zhao, J.; Hua, Z.; Gao, J.; Ruan, M.; Yan, D. Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance. J. Mater. Chem. 2007, 17, 855–860. [Google Scholar] [CrossRef]
- Ji, L.; Medford, A.J.; Zhang, X. Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials. J. Mater. Chem. 2009, 19, 5593–5601. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, J.; Zhao, X. Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 2011, 115, 6448–6454. [Google Scholar] [CrossRef]
- Sawangphruk, M.; Srimuk, P.; Chiochan, P.; Krittayavathananon, A.; Luanwuthi, S.; Limtrakul, J. High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 2013, 60, 109–116. [Google Scholar] [CrossRef]
- Rosaiah, P.; Divya, P.; Sambasivam, S.; Tighezza, A.M.; Kalaivani, V.; Muthukrishnaraj, A.; Ayyar, M.; Niyitanga, T.; Kim, H. Carbon based manganese oxide (MnO2, MnO2/MWCNT and MnO2/rGO) composite electrodes for high-stability Li-ion batteries. Carbon Lett. 2023, 34, 215–225. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J. Definitions of pseudocapacitive materials: A brief review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef]
- Majumdar, D. Recent progress in copper sulfide based nanomaterials for high energy supercapacitor applications. J. Electroanal. Chem. 2021, 880, 114825. [Google Scholar] [CrossRef]
- Dubal, D.P.; Chodankar, N.R.; Holze, R.; Kim, D.H.; Gomez-Romero, P. Ultrathin mesoporous RuCo2O4 nanoflakes: An advanced electrode for high-performance asymmetric supercapacitors. ChemSusChem 2017, 10, 1771–1782. [Google Scholar] [CrossRef]
- Kim, S.A.; Park, H.J.; Kim, S.K.; Park, K.M.; Jung, K.-H. Carbon nanofiber electrodes derived from polyacrylonitrile/cucurbituril composite and their supercapacitor performance. Carbon Lett. 2023, 33, 1–8. [Google Scholar] [CrossRef]
- Lee, D.G.; Ryoo, G.B.; Jung, K.-H. Energy Storage Performance of Carbon Nanofiber Electrodes Derived from Crosslinked PI/PVDF Blends. POLYMER-KOREA 2021, 45, 927–933. [Google Scholar] [CrossRef]
- Lee, D.G.; Lee, B.C.; Jung, K.-H. Preparation of Porous Carbon Nanofiber Electrodes Derived from 6FDA-Durene/PVDF Blends and Their Electrochemical Properties. Polymers 2021, 13, 720. [Google Scholar] [CrossRef]
- Tan, Y.B.; Lee, J.-M. Graphene for supercapacitor applications. J. Mater. Chem. A 2013, 1, 14814–14843. [Google Scholar] [CrossRef]
- Pan, H.; Li, J.; Feng, Y. Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 2010, 5, 654–668. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Wang, H.; Yan, H. A review of performance optimization of MOF-derived metal oxide as electrode materials for supercapacitors. Int. J. Energy Res. 2019, 43, 697–716. [Google Scholar] [CrossRef]
- Du, W.; Bai, Y.-L.; Xu, J.; Zhao, H.; Zhang, L.; Li, X.; Zhang, J. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J. Power Sources 2018, 402, 281–295. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, Y.; Zhang, Y.; Guo, C.; Tang, B.; Sun, D. MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery. J. Mater. Chem. A 2015, 3, 5266–5269. [Google Scholar] [CrossRef]
- Zheng, F.; Xu, S.; Yin, Z.; Zhang, Y.; Lu, L. Facile synthesis of MOF-derived Mn2O3 hollow microspheres as anode materials for lithium-ion batteries. RSC Adv. 2016, 6, 93532–93538. [Google Scholar] [CrossRef]
- Racik, K.M.; Manikandan, A.; Mahendiran, M.; Prabakaran, P.; Madhavan, J.; Raj, M.V.A. Fabrication of manganese oxide decorated copper oxide (MnO2/CuO) nanocomposite electrodes for energy storage supercapacitor devices. Phys. E Low-Dimens. Syst. Nanostruct 2020, 119, 114033. [Google Scholar] [CrossRef]
- Maile, N.; Shinde, S.; Patil, S.; Kim, D.-Y.; Fulari, A.; Lee, D.; Fulari, V. Capacitive property studies of electrochemically synthesized Co3O4 and Mn3O4 on inexpensive stainless steel current collector for supercapacitor application. Ceram. Int. 2020, 46, 14640–14649. [Google Scholar] [CrossRef]
- Kavitha, E.; Meiyazhagan, S.; Yugeswaran, S.; Balraju, P.; Suresh, K. Electrochemical prospects and potential of hausmannite Mn3O4 nanoparticles synthesized through microplasma discharge for supercapacitor applications. Int. J. Energy Res. 2021, 45, 7038–7056. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Y.; Xie, F.; Zhao, G.; Han, L.; Zhang, L.; Lu, T.; Amin, M.A.; Yamauchi, Y.; Xu, X. Polyaniline coated MOF-derived Mn2O3 nanorods for efficient hybrid capacitive deionization. Environ. Res. 2022, 212, 113331. [Google Scholar] [CrossRef]
Element | Mn-MOFs | A-Mn-MOFs |
---|---|---|
Mn | 36.1 wt% | 72.7 wt% |
C | 44.6 wt% | 4.1 wt% |
O | 19.3 wt% | 23.2 wt% |
SSA1 (m2 g−1) | TPV 2 (cm3 g−1) | Vmicro 3 (cm3 g−1) | Vmeso 4 (cm3 g−1) | |
---|---|---|---|---|
Mn-MOFs | 0.49 | 1.04 × 10−3 | 9.92 × 10−5 | 9.41 × 10−4 |
A-Mn-MOFs | 50.92 | 0.15 | 2.84 × 10−3 | 0.15 |
Mn-MOFs | A-Mn-MOFs | |
---|---|---|
Csp (F g−1) at 0.1 A g−1 | 61.6 | 214.0 |
E (Wh kg−1) at 0.1 A g−1 | 8.6 | 29.7 |
P (kW kg−1) at 5 A g−1 | 1.91 | 2.35 |
Materials | Electrolyte | Current Density | Specific Capacitance | Reference |
---|---|---|---|---|
MnO2 nanorods | 1 M Na2SO4 | 0.5 A g−1 | 163.5 F g−1 | [31] |
MnO2 nanoparticles | 1 M KOH | 0.5 A g−1 | 175.5 F g−1 | [65] |
Mn3O4 thin films | 2 M KOH | 0.5 mA cm−2 | 109 F g−1 | [66] |
Mn3O4 nanoparticles | 1 M KCL | 0.5 A g−1 | 144.5 F g−1 | [67] |
Mn2O3 nanocubes | 0.5 M Na2SO4 | 0.1 A g−1 | 191.1 F g−1 | [32] |
Mn2O3 nanorods | 1 M NaCl | 0.5 A g−1 | 93 F g−1 | [68] |
A-Mn-MOFs | 1 M Na2SO4 | 0.1 A g−1 | 214.0 | This Work |
0.5 A g−1 | 181.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryoo, G.; Kim, S.K.; Lee, D.K.; Kim, Y.-J.; Han, Y.S.; Jung, K.-H. Energy Storage Performance of Electrode Materials Derived from Manganese Metal–Organic Frameworks. Nanomaterials 2024, 14, 503. https://doi.org/10.3390/nano14060503
Ryoo G, Kim SK, Lee DK, Kim Y-J, Han YS, Jung K-H. Energy Storage Performance of Electrode Materials Derived from Manganese Metal–Organic Frameworks. Nanomaterials. 2024; 14(6):503. https://doi.org/10.3390/nano14060503
Chicago/Turabian StyleRyoo, Gyeongbeom, Seon Kyung Kim, Do Kyung Lee, Young-Jin Kim, Yoon Soo Han, and Kyung-Hye Jung. 2024. "Energy Storage Performance of Electrode Materials Derived from Manganese Metal–Organic Frameworks" Nanomaterials 14, no. 6: 503. https://doi.org/10.3390/nano14060503
APA StyleRyoo, G., Kim, S. K., Lee, D. K., Kim, Y. -J., Han, Y. S., & Jung, K. -H. (2024). Energy Storage Performance of Electrode Materials Derived from Manganese Metal–Organic Frameworks. Nanomaterials, 14(6), 503. https://doi.org/10.3390/nano14060503