Enhancing the Consistency and Performance of Graphene-Based Devices via Al Intermediate-Layer-Assisted Transfer and Patterning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transfer Process of Graphene onto SiO2/Si Substrates
2.2. Fabrication Process of Graphene Patterning
2.3. Characterization
3. Results
3.1. Surface Analysis
3.2. Electrical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Heersche, H.B.; Jarillo-Herrero, P.; Oostinga, J.B.; Vandersypen, L.M.; Morpurgo, A.F. Bipolar supercurrent in graphene. Nature 2007, 446, 56–59. [Google Scholar] [CrossRef]
- Kong, L.; Enders, A.; Rahman, T.S.; Dowben, P.A. Molecular adsorption on graphene. J. Phys. Condens. Matter. 2014, 26, 443001. [Google Scholar] [CrossRef]
- Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef]
- Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C.W.; McDonnell, S.; Colombo, L.; Vogel, E.M.; Ruoff, R.S.; Wallace, R.M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108. [Google Scholar] [CrossRef]
- Vasić, B.; Zurutuza, A.; Gajić, R. Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene. Carbon 2016, 102, 304–310. [Google Scholar] [CrossRef]
- Guo, Z.; Li, C.; Zu, P.; Liu, Z.; Li, J.; Li, J. The kinetics of crack propagation in CVD graphene film. Diamond Relat. Mater. 2022, 126, 109056. [Google Scholar] [CrossRef]
- Sul, O.; Kim, K.; Choi, E.; Kil, J.; Park, W.; Lee, S.B. Reduction of hole doping of chemical vapor deposition grown graphene by photoresist selection and thermal treatment. Nanotechnology 2016, 27, 505205. [Google Scholar] [CrossRef] [PubMed]
- Auchter, E.; Marquez, J.; Yarbro, S.L.; Dervishi, E. A facile alternative technique for large-area graphene transfer via sacrificial polymer. AIP Adv. 2017, 7, 125306. [Google Scholar] [CrossRef]
- Nath, A.; Koehler, A.D.; Jernigan, G.G.; Wheeler, V.D.; Hite, J.K.; Hernández, S.C.; Robinson, Z.R.; Garces, N.Y.; Myers-Ward, R.L.; Eddy, C.R.; et al. Achieving clean epitaxial graphene surfaces suitable for device applications by improved lithographic process. Appl. Phys. Lett. 2014, 104, 224102. [Google Scholar] [CrossRef]
- Robinson, J.A.; LaBella, M.; Zhu, M.; Hollander, M.; Kasarda, R.; Hughes, Z.; Trumbull, K.; Cavalero, R.; Snyder, D. Contacting graphene. Appl. Phys. Lett. 2011, 98, 053103. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lu, C.C.; Yeh, C.H.; Jin, C.; Suenaga, K.; Chiu, P.W. Graphene annealing: How clean can it be? Nano Lett. 2012, 12, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; An, H.; Seo, Y.-S.; Jung, J. Plasma Treatment to Improve Chemical Vapor Deposition-Grown Graphene to Metal Electrode Contact. Jpn. J. Appl. Phys. 2012, 51, 04dn04. [Google Scholar] [CrossRef]
- Joiner, C.A.; Roy, T.; Hesabi, Z.R.; Chakrabarti, B.; Vogel, E.M. Cleaning graphene with a titanium sacrificial layer. Appl. Phys. Lett. 2014, 104, 223109. [Google Scholar] [CrossRef]
- Wang, N.C.; Carrion, E.A.; Tung, M.C.; Pop, E. Reducing graphene device variability with yttrium sacrificial layers. Appl. Phys. Lett. 2017, 110, 223106. [Google Scholar] [CrossRef]
- Jang, Y.; Seo, Y.M.; Jang, H.S.; Heo, K.; Whang, D. Performance Improvement of Residue-Free Graphene Field-Effect Transistor Using Au-Assisted Transfer Method. Sensors 2021, 21, 7262. [Google Scholar] [CrossRef] [PubMed]
- Engelmark, F.; Iriarte, G.F.; Katardjiev, I.V. Selective etching of Al/AlN structures for metallization of surface acoustic wave devices. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2002, 20, 843. [Google Scholar] [CrossRef]
- Cherian, C.T.; Giustiniano, F.; Martin-Fernandez, I.; Andersen, H.; Balakrishnan, J.; Ozyilmaz, B. ‘Bubble-free’ electrochemical delamination of CVD graphene films. Small 2015, 11, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zheng, L.; Luo, F.; Qian, J.; Wang, J.; Yan, M.; Wang, W.; Wu, Q.; Tang, J.; Cao, Y.; et al. Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nat. Commun. 2022, 13, 5410. [Google Scholar] [CrossRef]
- Beams, R.; Gustavo Cancado, L.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter. 2015, 27, 083002. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.-W.; Lee, H.M.; Yu, S.M.; Lim, K.-S.; Jung, J.H.; Kim, M.-K.; Kim, S.-W.; Han, J.-H.; Ruoff, R.S.; Yoo, J.-B. A facile route to recover intrinsic graphene over large scale. ACS Nano 2012, 6, 7781–7788. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Liu, L.; Berciaud, S.; Yu, Y.J.; Liu, H.; Kim, P.; Flynn, G.W.; Brus, L.E. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 2010, 10, 4944–4951. [Google Scholar] [CrossRef] [PubMed]
- Lovejeet, S.; Peter, J.L.; Clifford, L.H. Effect of Film Thickness on the Dissolution Rate Behavior of Photoresist Polymer Thin Films; SPIE: Bellingham, WA, USA, 2004; pp. 1007–1016. [Google Scholar]
- Sharma, M.; Naik, A.A.; Raghunathan, P.; Eswaran, S. Evaluation of microlithographic performance of ‘deep UV’resists: Synthesis, and 2D NMR studies on alternating ‘high ortho’novolak resins. J. Chem. Sci. 2012, 124, 395–401. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Su, N.; Li, M. Improving consistency and performance of graphene-based devices via Al sacrificial layer. Coll. Interface Sci. Commun. 2023, 56, 100743. [Google Scholar] [CrossRef]
- Choi, J.; Kim, H.; Park, J.; Iqbal, M.W.; Iqbal, M.Z.; Eom, J.; Jung, J. Enhanced performance of graphene by using gold film for transfer and masking process. Curr. Appl. Phys. 2014, 14, 1045–1050. [Google Scholar] [CrossRef]
- Hwang, E.H.; Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 2008, 77, 115449. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Hone, J.; Stormer, H.L.; Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 2008, 101, 096802. [Google Scholar] [CrossRef]
- Hwang, E.H.; Das Sarma, S. Screening-induced temperature-dependent transport in two-dimensional graphene. Phys. Rev. B 2009, 79, 165404. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Su, N.; Wei, S.; Wang, J.; Li, M. Enhancing the Consistency and Performance of Graphene-Based Devices via Al Intermediate-Layer-Assisted Transfer and Patterning. Nanomaterials 2024, 14, 568. https://doi.org/10.3390/nano14070568
Wang Y, Su N, Wei S, Wang J, Li M. Enhancing the Consistency and Performance of Graphene-Based Devices via Al Intermediate-Layer-Assisted Transfer and Patterning. Nanomaterials. 2024; 14(7):568. https://doi.org/10.3390/nano14070568
Chicago/Turabian StyleWang, Yinjie, Ningning Su, Shengsheng Wei, Junqiang Wang, and Mengwei Li. 2024. "Enhancing the Consistency and Performance of Graphene-Based Devices via Al Intermediate-Layer-Assisted Transfer and Patterning" Nanomaterials 14, no. 7: 568. https://doi.org/10.3390/nano14070568
APA StyleWang, Y., Su, N., Wei, S., Wang, J., & Li, M. (2024). Enhancing the Consistency and Performance of Graphene-Based Devices via Al Intermediate-Layer-Assisted Transfer and Patterning. Nanomaterials, 14(7), 568. https://doi.org/10.3390/nano14070568