Continuous-Wave Pumped Monolayer WS2 Lasing for Photonic Barcoding
Abstract
:1. Introduction
2. Methods
2.1. Synthesis of Monolayer WS2 Films
2.2. Preparation of the WS2 Microlaser
2.3. Readout and Digitization of Photonic Barcode Labels
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anwar, A.R.; Mur, M.; Humar, M. Microcavity- and Microlaser-Based Optical Barcoding: A Review of Encoding Techniques and Applications. ACS Photonics 2023, 10, 1202–1224. [Google Scholar] [CrossRef]
- Hou, Y.; Gao, Z.; Zhao, Y.S.; Yan, Y. Organic Micro/Nanoscale Materials for Photonic Barcodes. Org. Chem. Front. 2020, 7, 2776–2788. [Google Scholar] [CrossRef]
- Deneff, J.I.; Butler, K.S.; Rohwer, L.E.S.; Pearce, C.J.; Valdez, N.R.; Rodriguez, M.A.; Luk, T.S.; Sava Gallis, D.F. Encoding Multilayer Complexity in Anti-Counterfeiting Heterometallic MOF-Based Optical Tags. Angew. Chem. Int. Ed. 2021, 60, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shang, L.; Wang, H.; Zhang, H.; Zou, M.; Zhao, Y. Multicolored Photonic Barcodes from Dynamic Micromolding. Mater. Horiz. 2018, 5, 979–983. [Google Scholar] [CrossRef]
- Yao, W.; Tian, Q.; Wu, W. Tunable Emissions of Upconversion Fluorescence for Security Applications. Adv. Opt. Mater. 2019, 7, 1801171. [Google Scholar] [CrossRef]
- Lee, S.; Pekdemir, S.; Kayaci, N.; Kalay, M.; Onses, M.S.; Ye, J. Graphene-Based Physically Unclonable Functions with Dual Source of Randomness. ACS Appl. Mater. Interfaces 2023, 15, 33878–33889. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.; Kim, H.; Kim, J.; Kwon, S. Colour-Barcoded Magnetic Microparticles for Multiplexed Bioassays. Nat. Mater. 2010, 9, 745–749. [Google Scholar] [CrossRef]
- Huang, C.; Lucas, B.; Vervaet, C.; Braeckmans, K.; Van Calenbergh, S.; Karalic, I.; Vandewoestyne, M.; Deforce, D.; Demeester, J.; De Smedt, S.C. Unbreakable Codes in Electrospun Fibers: Digitally Encoded Polymers to Stop Medicine Counterfeiting. Adv. Mater. 2010, 22, 2657–2662. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, C.; Gao, Z.; Zhou, W.; Hou, Y.; Zhou, Z.; Yao, J.; Zhao, Y.S. Randomly Induced Phase Transformation in Silk Protein-Based Microlaser Arrays for Anticounterfeiting. Adv. Mater. 2021, 33, 2102586. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Yang, Y.; Cui, Y.; Qian, G. Tunable NIR Lasing in MOF for Multi-Level Complex Photonic Barcodes. Adv. Opt. Mater. 2023, 11, 2202714. [Google Scholar] [CrossRef]
- Mao, W.; Gao, X.; Li, B.; Zhang, Y.; Wang, P.; Dong, H.; Zhang, L. Randomized Whispering-Gallery-Mode Microdisk Laser Arrays via Cavity Deformations for Anti-Counterfeiting Labels. Photonics Res. 2023, 11, 1227. [Google Scholar] [CrossRef]
- Gao, X.; Wang, H.; Dong, H.; Shao, J.; Shao, Y.; Zhang, L. Tunable Key-Size Physical Unclonable Functions Based on Phase Segregation in Mixed Halide Perovskites. ACS Appl. Mater. Interfaces 2023, 15, 23429–23438. [Google Scholar] [CrossRef]
- Mao, W.; Li, H.; Tang, B.; Zhang, C.; Liu, L.; Wang, P.; Dong, H.; Zhang, L. Laser Patterning of Large-Scale Perovskite Single-Crystal-Based Arrays for Single-Mode Laser Displays. Int. J. Extrem. Manuf. 2023, 5, 045001. [Google Scholar] [CrossRef]
- Salehzadeh, O.; Djavid, M.; Tran, N.H.; Shih, I.; Mi, Z. Optically Pumped Two-Dimensional MoS2 Lasers Operating at Room-Temperature. Nano Lett. 2015, 15, 5302–5306. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Cong, C.; Wang, Z.; Peimyoo, N.; Wu, L.; Zou, C.; Chen, Y.; Chin, X.Y.; Wang, J.; Soci, C.; et al. Room-Temperature 2D Semiconductor Activated Vertical-Cavity Surface-Emitting Lasers. Nat. Commun. 2017, 8, 543. [Google Scholar] [CrossRef]
- Tran, T.T.; Wang, D.; Xu, Z.-Q.; Yang, A.; Toth, M.; Odom, T.W.; Aharonovich, I. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays. Nano Lett. 2017, 17, 2634–2639. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Chen, S.; Zhang, Q.; Wang, X.; Zhu, X.; Zhang, X.; Xu, X.; Yang, T.; He, M.; et al. Wavelength-Tunable Mid-Infrared Lasing from Black Phosphorus Nanosheets. Adv. Mater. 2020, 32, 1808319. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Liu, J.; Lin, Q.; Su, R.; Wei, Y.; Krauss, T.F.; Li, J.; Wang, Y.; Wang, X. Laser-Like Emission from a Sandwiched MoTe2 Heterostructure on a Silicon Single-Mode Resonator. Adv. Opt. Mater. 2019, 7, 1900538. [Google Scholar] [CrossRef]
- Liang, C.; Wang, E.; Li, X.; Wang, J.; Liu, Y.; Chen, B.; Chen, H.; Liu, Y.; Peng, X. Optical Limiting Performances of Transitional Metal Dichalcogenides MX2 (M = V, Nb, Ta; X = S, Se) with Ultralow Initial Threshold and Optical Limiting Threshold. Chin. Opt. Lett. 2022, 20, 021901. [Google Scholar] [CrossRef]
- Wu, S.; Buckley, S.; Schaibley, J.R.; Feng, L.; Yan, J.; Mandrus, D.G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A.; et al. Monolayer Semiconductor Nanocavity Lasers with Ultralow Thresholds. Nature 2015, 520, 69–72. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Huang, D.; Sun, H.; Fan, F.; Feng, J.; Wang, Z.; Ning, C.Z. Room-Temperature Continuous-Wave Lasing from Monolayer Molybdenum Ditelluride Integrated with a Silicon Nanobeam Cavity. Nat. Nanotechnol. 2017, 12, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, H.R.; Perea-López, N.; Elías, A.L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urías, F.; Crespi, V.H.; Terrones, H.; Terrones, M. Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 2013, 13, 3447–3454. [Google Scholar] [CrossRef] [PubMed]
- Lan, F.; Yang, R.; Xu, Y.; Qian, S.; Zhang, S.; Cheng, H.; Zhang, Y. Synthesis of Large-Scale Single-Crystalline Monolayer WS2 Using a Semi-Sealed Method. Nanomaterials 2018, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T. Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition. Adv. Opt. Mater. 2014, 2, 131–136. [Google Scholar] [CrossRef]
- Shi, J.; Zhu, J.; Wu, X.; Zheng, B.; Chen, J.; Sui, X.; Zhang, S.; Shi, J.; Du, W.; Zhong, Y.; et al. Enhanced Trion Emission and Carrier Dynamics in Monolayer WS2 Coupled with Plasmonic Nanocavity. Adv. Opt. Mater. 2020, 8, 2001147. [Google Scholar] [CrossRef]
- Kwon, Y.; Kim, K.; Kim, W.; Ryu, S.; Cheong, H. Variation of Photoluminescence Spectral Line Shape of Monolayer WS2. Curr. Appl. Phys. 2018, 18, 941–945. [Google Scholar] [CrossRef]
- Kaplan, D.; Gong, Y.; Mills, K.; Swaminathan, V.; Ajayan, P.M.; Shirodkar, S.; Kaxiras, E. Excitation Intensity Dependence of Photoluminescence from Monolayers of MoS2 and WS2/MoS2 Heterostructures. 2D Mater. 2016, 3, 015005. [Google Scholar] [CrossRef]
- Ren, T.; Song, P.; Chen, J.; Loh, K.P. Whisper Gallery Modes in Monolayer Tungsten Disulfide-Hexagonal Boron Nitride Optical Cavity. ACS Photonics 2018, 5, 353–358. [Google Scholar] [CrossRef]
- Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G. Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Li, S.-L.; Miyazaki, H.; Song, H.; Kuramochi, H.; Nakaharai, S.; Tsukagoshi, K. Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates. ACS Nano 2012, 6, 7381–7388. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, B.; Bera, A.; Muthu, D.V.S.; Bhowmick, S.; Waghmare, U.V.; Sood, A.K. Symmetry-Dependent Phonon Renormalization in Monolayer MoS2 Transistor. Phys. Rev. B 2012, 85, 161403. [Google Scholar] [CrossRef]
- Mohiuddin, T.M.G.; Lombardo, A.; Nair, R.R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D.M.; Galiotis, C.; Marzari, N.; et al. Uniaxial Strain in Graphene by Raman Spectroscopy: G Peak Splitting, Grüneisen Parameters, and Sample Orientation. Phys. Rev. B 2009, 79, 205433. [Google Scholar] [CrossRef]
- Lien, D.-H.; Kang, J.S.; Amani, M.; Chen, K.; Tosun, M.; Wang, H.-P.; Roy, T.; Eggleston, M.S.; Wu, M.C.; Dubey, M.; et al. Engineering Light Outcoupling in 2D Materials. Nano Lett. 2015, 15, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wan, Y.; Ma, Y.; Wang, W.; Wang, Y.; Dai, L. Interference Effect on Optical Signals of Monolayer MoS2. Appl. Phys. Lett. 2015, 107, 101904. [Google Scholar] [CrossRef]
- Berghäuser, G.; Malic, E. Analytical Approach to Excitonic Properties of MoS2. Phys. Rev. B 2014, 89, 125309. [Google Scholar] [CrossRef]
- Fu, Y.; He, D.; He, J.; Bian, A.; Zhang, L.; Liu, S.; Wang, Y.; Zhao, H. Effect of Dielectric Environment on Excitonic Dynamics in Monolayer WS2. Adv. Mater. Interfaces 2019, 6, 1901307. [Google Scholar] [CrossRef]
- Sledzinska, M.; Xiao, P.; Puig Vilardell, E.; Chávez Angel, E.; Esplandiu, M.J.; Sotomayor Torres, C.M. Exciton Tuning and Strain Imaging in WS2 Supported on PDMS Micropillars. Appl. Phys. Lett. 2022, 121, 253101. [Google Scholar] [CrossRef]
- Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X.; Zhou, W.; Yu, T.; Qiu, C.; Birdwell, A.G.; Crowne, F.J.; et al. Strain and Structure Heterogeneity in MoS2 Atomic Layers Grown by Chemical Vapour Deposition. Nat. Commun. 2014, 5, 5246. [Google Scholar] [CrossRef]
- Dadgar, A.M.; Scullion, D.; Kang, K.; Esposito, D.; Yang, E.H.; Herman, I.P.; Pimenta, M.A.; Santos, E.-J.G.; Pasupathy, A.N. Strain Engineering and Raman Spectroscopy of Monolayer Transition Metal Dichalcogenides. Chem. Mater. 2018, 30, 5148–5155. [Google Scholar] [CrossRef]
- Xiang, Q.; Yue, X.; Wang, Y.; Du, B.; Chen, J.; Zhang, S.; Li, G.; Cong, C.; Yu, T.; Li, Q.; et al. Unveiling the Origin of Anomalous Low-Frequency Raman Mode in CVD-Grown Monolayer WS2. Nano Res. 2021, 14, 4314–4320. [Google Scholar] [CrossRef]
- Tamboli, A.C.; Haberer, E.D.; Sharma, R.; Lee, K.H.; Nakamura, S.; Hu, E.L. Room-Temperature Continuous-Wave Lasing in GaN/InGaN Microdisks. Nat. Photonics 2007, 1, 61–64. [Google Scholar] [CrossRef]
- Gorodetsky, M.L.; Savchenkov, A.A.; Ilchenko, V.S. Ultimate Q of Optical Microsphere Resonators. Opt. Lett. 1996, 21, 453–455. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Qu, J.; Mao, W.; Chen, S.; Dong, H. Continuous-Wave Pumped Monolayer WS2 Lasing for Photonic Barcoding. Nanomaterials 2024, 14, 614. https://doi.org/10.3390/nano14070614
Cheng H, Qu J, Mao W, Chen S, Dong H. Continuous-Wave Pumped Monolayer WS2 Lasing for Photonic Barcoding. Nanomaterials. 2024; 14(7):614. https://doi.org/10.3390/nano14070614
Chicago/Turabian StyleCheng, Haodong, Junyu Qu, Wangqi Mao, Shula Chen, and Hongxing Dong. 2024. "Continuous-Wave Pumped Monolayer WS2 Lasing for Photonic Barcoding" Nanomaterials 14, no. 7: 614. https://doi.org/10.3390/nano14070614
APA StyleCheng, H., Qu, J., Mao, W., Chen, S., & Dong, H. (2024). Continuous-Wave Pumped Monolayer WS2 Lasing for Photonic Barcoding. Nanomaterials, 14(7), 614. https://doi.org/10.3390/nano14070614