Research Progress on Rashba Effect in Two-Dimensional Organic–Inorganic Hybrid Lead Halide Perovskites
Abstract
:1. Introduction
2. Rashba Effect in Three-Dimensional (3D) Perovskites
3. Rashba Effect in Two-Dimensional Perovskites
3.1. Origin and Magnitude of Rashba Spin Splitting in 2D RP Perovskites
3.2. Layer-Dependent Rashba Band Splitting in 2D Perovskites
3.3. Rashba Effect in 2D Perovskite Quantum Dots
3.4. Rashba Effect in 2D/3D Composite Perovskite Films
3.5. Rashba Effect of Van Der Waals Heterostructures Based on 2D Perovskites
3.6. Applications of 2D Rashba Effect in Circularly Polarized Light Detection
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Wang, F.; Chang, Q.; Yun, Y.; Liu, S.; Liu, Y.; Wang, J.; Fang, Y.; Cheng, Z.; Feng, S.; Yang, L.; et al. Hole-Transporting Low-Dimensional Perovskite for Enhancing Photovoltaic Performance. Research 2021, 2021, 9797053. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, R.; Zaban, A. Perovskites for Photovoltaics in the Spotlight: Photoinduced Physical Changes and Their Implications. Acc. Chem. Res. 2016, 49, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042. [Google Scholar] [CrossRef]
- Aydin, E.; Allen, T.G.; De Bastiani, M.; Razzaq, A.; Xu, L.; Ugur, E.; Liu, J.; De Wolf, S. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 2024, 383, eadh3849. [Google Scholar] [CrossRef] [PubMed]
- Balaguera, E.H.; Bisquert, J. Accelerating the Assessment of Hysteresis in Perovskite Solar Cells. ACS Energy Lett. 2024, 9, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; Pal, A.J. Carrier recombination in CH3NH3PbI3: Why is it a slow process? Rep. Prog. Phys. 2022, 85, 024501. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, F.; Wiktor, J.; De Angelis, F.; Pasquarello, A. Origin of low electron–hole recombination rate in metal halide perovskites. Energy Environ. Sci. 2018, 11, 101–105. [Google Scholar] [CrossRef]
- Chen, T.; Chen, W.-L.; Foley, B.J.; Lee, J.; Ruff, J.P.C.; Ko, J.Y.P.; Brown, C.M.; Harriger, L.W.; Zhang, D.; Park, C.; et al. Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites. Proc. Natl. Acad. Sci. USA 2017, 114, 7519–7524. [Google Scholar] [CrossRef] [PubMed]
- Frost, J.M.; Butler, K.T.; Brivio, F.; Hendon, C.H.; van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Lett. 2014, 14, 2584–2590. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, D.; Vardeny, Z.V. Multifunctional Optoelectronic–Spintronic Device Based on Hybrid Organometal Trihalide Perovskites. Adv. Electron. Mater. 2017, 3, 1600426. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, R.; Tokina, M.V.; Prezhdo, O.V. Interplay between Localized and Free Charge Carriers Can Explain Hot Fluorescence in the CH3NH3PbBr3 Perovskite: Time-Domain Ab Initio Analysis. J. Am. Chem. Soc. 2017, 139, 17327. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier Recombination Dynamics in Perovskite CH3NH3PbI3 for Solar Cell Applications. J. Am. Chem. Soc. 2014, 136, 11610. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.D.; Burlakov, V.M.; Leijtens, T.; Ball, J.M.; Goriely, A.; Snaith, H.J. Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States. Phys. Rev. Appl. 2014, 2, 034007. [Google Scholar] [CrossRef]
- Azarhoosh, P.; McKechnie, S.; Frost, J.M.; Walsh, A.; van Schilfgaarde, M. Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells. APL Mater. 2016, 4, 091501. [Google Scholar] [CrossRef]
- Steirer, K.X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J.J. Defect Tolerance in Methylammonium Lead Triiodide Perovskite. ACS Energy Lett. 2016, 1, 360–366. [Google Scholar] [CrossRef]
- Johnston, M.B.; Herz, L.M. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. Acc. Chem. Res. 2015, 49, 146–154. [Google Scholar] [CrossRef]
- Brandt, R.E.; Poindexter, J.R.; Gorai, P.; Kurchin, R.C.; Hoye, R.L.Z.; Nienhaus, L.; Wilson, M.W.B.; Polizzotti, J.A.; Sereika, R.; Zaltauskas, R.; et al. Searching for “Defect-Tolerant” Photovoltaic Materials: Combined Theoretical and Experimental Screening. Chem. Mater. 2017, 29, 4667–4674. [Google Scholar] [CrossRef]
- Pazos-Outón, L.M.; Szumilo, M.; Lamboll, R.; Richter, J.M.; Crespo-Quesada, M.; Abdi-Jalebi, M.; Beeson, H.J.; Vrućinić, M.; Alsari, M.; Snaith, H.J.; et al. Photon recycling in lead iodide perovskite solar cells. Science 2016, 351, 1430–1433. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Wen, X.; Chen, W.; Zhou, C.; Yang, S.; Cao, G.; Ghiggino, K.P.; Zhang, H.; Jia, B. The dominant energy transport pathway in halide perovskites: Photon recycling or carrier diffusion? Adv. Energy Mater. 2019, 9, 1900185. [Google Scholar] [CrossRef]
- Wright, A.D.; Verdi, C.; Milot, R.L.; Eperon, G.E.; Pérez-Osorio, M.A.; Snaith, H.J.; Giustino, F.; Johnston, M.B.; Herz, L.M. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 2016, 7, 11755. [Google Scholar] [CrossRef]
- Zhao, T.Q.; Shi, W.; Xi, J.Y.; Wang, D.; Shuai, Z.G. Intrinsic and Extrinsic Charge Transport in CH3NH3PbI3 Perovskites Predicted from First-Principles. Sci. Rep. 2016, 6, 19968. [Google Scholar] [CrossRef] [PubMed]
- Kirchartz, T.; Markvart, T.; Rau, U.; Egger, D.A. Impact of Small Phonon Energies on the Charge-Carrier Lifetimes in Metal-Halide Perovskites. J. Phys. Chem. Lett. 2018, 9, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Motta, C.; Sanvito, S. Electron–Phonon Coupling and Polaron Mobility in Hybrid Perovskites from First Principles. J. Phys. Chem. C 2018, 122, 1361–1366. [Google Scholar] [CrossRef]
- Frost, J.M.; Butler, K.T.; Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2014, 2, 081506. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, F.; Koocher, N.Z.; Takenaka, H.; Wang, F.G.; Rappe, A.M. Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. J. Phys. Chem. Lett. 2015, 6, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-Y.; Podzorov, V. Charge Carriers in Hybrid Organic–Inorganic Lead Halide Perovskites Might Be Protected as Large Polarons. J. Phys. Chem. Lett. 2015, 6, 4758–4761. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Tan, L.Z.; Liu, S.; Rappe, A.M. Rashba spin–orbit coupling enhanced carrier lifetime in CH3NH3Pbl3. Nano Lett. 2015, 15, 7794. [Google Scholar] [CrossRef] [PubMed]
- Myung, C.W.; Javaid, S.; Kim, K.S.; Lee, G. Rashba–Dresselhaus effect in inorganic/organic lead iodide erovskite interfaces. ACS Energy Lett. 2018, 3, 1294. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.-X.; Van de Walle, C.G. Three-Dimensional Spin Texture in Hybrid Perovskites and Its Impact on Optical Transitions. J. Phys. Chem. Lett. 2018, 9, 2903–2908. [Google Scholar] [CrossRef]
- Dresselhaus, G.; Kip, A.F.; Kittel, C. Spin-Orbit Interaction and the Effective Masses of Holes in Germanium. Phys. Rev. B 1954, 95, 568–569. [Google Scholar] [CrossRef]
- Rashba, E.I. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Phys. Solid State 1960, 2, 1224–1238. [Google Scholar]
- Awschalom, D.D.; Loss, D.; Samarth, N. (Eds.) Semiconductor Spintronics and Quantum Computation; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2002. [Google Scholar]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed]
- Triana, M.A.; Hsiang, E.-L.; Zhang, C.; Dong, Y.; Wu, S.-T. Luminescent Nanomaterials for Energy-Efficient Display and Healthcare. ACS Energy Lett. 2022, 7, 1001–1020. [Google Scholar] [CrossRef]
- Zhang, C.; He, Z.; Chen, H.; Zhou, L.; Tan, G.; Wu, S.-T.; Dong, Y. Light diffusing, down-converting perovskite-on-polymer microspheres. J. Mater. Chem. C 2019, 7, 6527–6533. [Google Scholar] [CrossRef]
- Feng, X.; Sheng, Y.; Ma, K.; Xing, F.; Liu, C.; Yang, X.; Qian, H.; Zhang, S.; Di, Y.; Liu, Y.; et al. Multi-Level Anti-Counterfeiting and Optical Information Storage Based on Luminescence of Mn-Doped Perovskite Quantum Dots. Adv. Opt. Mater. 2022, 10, 2200706. [Google Scholar] [CrossRef]
- Kim, M.; Im, J.; Freeman, A.J.; Ihm, J.; Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl. Acad. Sci. USA 2014, 111, 6900. [Google Scholar] [CrossRef] [PubMed]
- Etienne, T.; Mosconi, E.; De Angelis, F. Dynamical Rashba Band Splitting in Hybrid Perovskites Modeled by Local Electric Fields. J. Phys. Chem. C 2018, 122, 124–132. [Google Scholar] [CrossRef]
- Hu, S.; Gao, H.; Qi, Y.; Tao, Y.; Li, Y.; Reimers, J.R.; Bokdam, M.; Franchini, C.; Di Sante, D.; Stroppa, A.; et al. Dipole Order in Halide Perovskites: Polarization and Rashba Band Splittings. J. Phys. Chem. C 2017, 121, 23045–23054. [Google Scholar] [CrossRef]
- Stroppa, A.; Di Sante, D.; Barone, P.; Bokdam, M.; Kresse, G.; Franchini, C.; Whangbo, M.-H.; Picozzi, S. Tunable ferroelectric polarization and its interplay with spin–orbit coupling in tin iodide perovskites. Nat. Commun. 2014, 5, 5900. [Google Scholar] [CrossRef]
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef]
- Giovanni, D.; Ma, H.; Chua, J.; Gratzel, M.; Ramesh, R.; Mhaisalkar, S.; Mathews, N.; Sum, T.C. Highly spin-polarized carrier dynamics and ultra large photoinduced magnetization in CH3NH3Pbl3 perovskite thin films. Nano Lett. 2015, 15, 1553. [Google Scholar] [CrossRef] [PubMed]
- Niesner, D.; Wilhelm, M.; Levchuk, I.; Osvet, A.; Shrestha, S.; Batentschuk, M.; Brabec, C.; Fauster, T. Giant Rashba splitting in CH3NH3PbBr3 organic–inorganic perovskite. Phys. Rev. Lett. 2016, 117, 126401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zha, Y.; Bao, C.; Hu, F.; Di, Y.; Liu, C.; Xing, F.; Xu, X.; Wen, X.; Gan, Z.; et al. Monolithic 2D Perovskites Enabled Artificial Photonic Synapses for Neuromorphic Vision Sensors. Adv. Mater. 2024, 36, e2311524. [Google Scholar] [CrossRef] [PubMed]
- Zha, Y.; Wang, Y.; Sheng, Y.; Zhang, X.; Shen, X.; Xing, F.; Liu, C.; Di, Y.; Cheng, Y.; Gan, Z. Stable and broadband photodetectors based on 3D/2D perovskite heterostructures with surface passivation. Appl. Phys. Lett. 2022, 121, 191904. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Peng, J.; Tang, J.; Zheng, K.; Liang, Z. 2D Ruddlesden–Popper Perovskites for Optoelectronics. Adv. Mater. 2018, 30, 1703487. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Wong, A.B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S.W.; Fu, A.; Bischak, C.G.; Ma, J.; Ding, T.; et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 2015, 349, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Blancon, J.-C.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C.M.M.; Appavoo, K.; Sfeir, M.Y.; et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, M.; Takagahara, T. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Phys. Rev. B 1989, 40, 12359–12381. [Google Scholar] [CrossRef]
- Cao, D.H.; Stoumpos, C.C.; Farha, O.K.; Hupp, J.T.; Kanatzidis, M.G. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J. Am. Chem. Soc. 2015, 137, 7843–7850. [Google Scholar] [CrossRef]
- Ahmad, S.; Fu, P.; Yu, S.; Yang, Q.; Liu, X.; Wang, X.; Wang, X.; Guo, X.; Li, C. Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 2019, 3, 794. [Google Scholar] [CrossRef]
- Ren, H.; Yu, S.; Chao, L.; Xia, Y.; Sun, Y.; Zuo, S.; Li, F.; Niu, T.; Yang, Y.; Ju, H.; et al. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 2020, 14, 154–163. [Google Scholar] [CrossRef]
- Gan, Z.; Cheng, Y.; Chen, W.; Loh, K.P.; Jia, B.; Wen, X. Photophysics of 2D organic–inorganic hybrid lead halide perovskites: Progress, debates, and challenges. Adv. Sci. 2021, 8, 2001843. [Google Scholar] [CrossRef] [PubMed]
- Bychkov, Y.A.; Rashba, E.I. Properties of a 2D Electron-Gas with Lifted Spectral Degeneracy. JETP Lett. 1984, 39, 78–81. [Google Scholar]
- Nitta, J.; Akazaki, T.; Takayanagi, H.; Enoki, T. Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure. Phys. Rev. Lett. 1997, 78, 1335–1338. [Google Scholar] [CrossRef]
- King, P.D.; Hatch, R.C.; Bianchi, M.; Ovsyannikov, R.; Lupulescu, C.; Landolt, G.; Slomski, B.; Dil, J.H.; Guan, D.; Mi, J.L.; et al. Large Tunable Rashba Spin Splitting of a Two-Dimensional Electron Gas in Bi2Se3. Phys. Rev. Lett. 2011, 107, 096802. [Google Scholar] [CrossRef] [PubMed]
- Lesne, E.; Fu, Y.; Oyarzun, S.; Rojas-Sánchez, J.C.; Vaz, D.C.; Naganuma, H.; Sicoli, G.; Attané, J.-P.; Jamet, M.; Jacquet, E.; et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 2016, 15, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Baniya, S.; Zhang, C.; Li, J.; Haney, P.; Sheng, C.-X.; Ehrenfreund, E.; Vardeny, Z.V. Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 2017, 3, e1700704. [Google Scholar] [CrossRef] [PubMed]
- Todd, S.B.; Riley, D.B.; Binai-Motlagh, A.; Clegg, C.; Ramachandran, A.; March, S.A.; Hoffman, J.M.; Hill, I.G.; Stoumpos, C.C.; Kanatzidis, M.G.; et al. Detection of Rashba spin splitting in 2D organic-inorganic perovskite via precessional carrier spin relaxation. APL Mater. 2019, 7, 081116. [Google Scholar] [CrossRef]
- Park, I.-H.; Zhang, Q.; Kwon, K.C.; Zhu, Z.; Yu, W.; Leng, K.; Giovanni, D.; Choi, H.S.; Abdelwahab, I.; Xu, Q.-H.; et al. Ferroelectricity and Rashba Effect in a Two-Dimensional Dion-Jacobson Hybrid Organic–Inorganic Perovskite. J. Am. Chem. Soc. 2019, 141, 15972–15976. [Google Scholar] [CrossRef]
- Jana, M.K.; Song, R.; Liu, H.; Khanal, D.R.; Janke, S.M.; Zhao, R.; Liu, C.; Vardeny, Z.V.; Blum, V.; Mitzi, D.B. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling. Nat. Commun. 2020, 11, 4699. [Google Scholar] [CrossRef] [PubMed]
- Kagdada, H.L.; Gupta, S.K.; Sahoo, S.; Singh, D.K. Mobility driven thermoelectric and optical properties of two-dimensional halide-based hybrid perovskites: Impact of organic cation rotation. Phys. Chem. Chem. Phys. 2022, 24, 8867–8880. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Liang, L.; Ma, J.; Li, J.; Li, W.; Liu, Z.; Li, H.; Chen, R.; Li, D. Thermally Assisted Rashba Splitting and Circular Photogalvanic Effect in Aqueously Synthesized 2D Dion–Jacobson Perovskite Crystals. Nano Lett. 2021, 21, 4584–4591. [Google Scholar] [CrossRef] [PubMed]
- Mitzi, D.B. Synthesis, structure and properties of organic-inorganic perovskites and related materials. Prog. Inorg. Chem. 1999, 48, 121. [Google Scholar]
- Shao, Y.; Gao, W.; Yan, H.; Li, R.; Abdelwahab, I.; Chi, X.; Rogée, L.; Zhuang, L.; Fu, W.; Lau, S.P.; et al. Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nat. Commun. 2022, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gong, W.; Stevens, C.E.; Hou, J.; Singh, A.; Zhang, H.; Anantharaman, S.B.; Mohite, A.D.; Hendrickson, J.R.; Yan, Q.; et al. Valley-Polarized Interlayer Excitons in 2D Chalcogenide–Halide Perovskite–van der Waals Heterostructures. ACS Nano 2023, 17, 7487–7497. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Maity, P.; Xu, L.; El-Zohry, A.M.; Li, H.; Bakr, O.M.; Brédas, J.-L.; Mohammed, O.F. Layer-Dependent Rashba Band Splitting in 2D Hybrid Perovskites. Chem. Mater. 2018, 30, 8538–8545. [Google Scholar] [CrossRef]
- Liu, B.; Gao, H.; Meng, C.; Ye, H. The Rashba effect in two-dimensional hybrid perovskites: The impacts of halogens and surface ligands. Phys. Chem. Chem. Phys. 2022, 24, 27827–27835. [Google Scholar] [CrossRef] [PubMed]
- Efros, A.L.; Brus, L.E. Nanocrystal Quantum Dots: From Discovery to Modern Development. ACS Nano 2021, 15, 6192–6210. [Google Scholar] [CrossRef]
- Geiregat, P.; Rodá, C.; Tanghe, I.; Singh, S.; Di Giacomo, A.; Lebrun, D.; Grimaldi, G.; Maes, J.; Van Thourhout, D.; Moreels, I.; et al. Localization-limited exciton oscillator strength in colloidal CdSe nanoplatelets revealed by the optically induced stark effect. Light Sci. Appl. 2021, 10, 112. [Google Scholar] [CrossRef]
- Swift, M.W.; Lyons, J.L.; Efros, A.L.; Sercel, P.C. Rashba exciton in a 2D perovskite quantum dot. Nanoscale 2021, 13, 16769. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, Z.; Qin, Y.; Liu, R.; He, Y.; Zhu, X.; Xu, F.; He, T. Rashba Effect and Spin-Dependent Excitonic Properties in Chiral Two-Dimensional/Three-Dimensional Composite Perovskite Films. J. Phys. Chem. Lett. 2023, 14, 11697–11703. [Google Scholar] [CrossRef] [PubMed]
- Thouin, F.; Golub, L.; Lomakina, F.; Bel’kov, V.; Olbrich, P.; Stachel, S.; Caspers, I.; Griesbeck, M.; Kugler, M.; Hirmer, M.J.; et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 2019, 18, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Lechner, V.; Golub, L.E.; Lomakina, F.; Bel’kov, V.V.; Olbrich, P.; Stachel, S.; Caspers, I.; Griesbeck, M.; Kugler, M.; Hirmer, M.J.; et al. Spin and orbital mechanisms of the magnetogyrotropic photogalvanic effects in GaAs/AlxGa1−xAs quantum well structures. Phys. Rev. B 2011, 83, 155313. [Google Scholar] [CrossRef]
- Lee, J.S.; Schober, G.A.H.; Bahramy, M.S.; Murakawa, H.; Onose, Y.; Arita, R.; Nagaosa, N.; Tokura, Y. Optical Response of Relativistic Electrons in the Polar BiTeI Semiconductor. Phys. Rev. Lett. 2011, 107, 117401. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Wang, X.; Lian, B.; Zhang, H.; Fang, X.; Shen, B.; Xu, G.; Xu, Y.; Zhang, S.-C.; Hwang, H.Y.; et al. Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2. Nat. Nanotechnol. 2014, 9, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhang, Y.; Li, X.; Feng, Y.; Zhang, H.; Xu, J. Chiral perovskites: Promising materials toward next-generation optoelectronics. Small 2019, 15, 1902237. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Liu, X.; Cao, B.; Tao, X. Chiral halide perovskite crystals for optoelectronic applications. Matter 2021, 4, 794–820. [Google Scholar] [CrossRef]
- Ma, J.; Wang, H.; Li, D. Recent Progress of Chiral Perovskites: Materials, Synthesis, and Properties. Adv. Mater. 2021, 33, 2008785. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Li, L.; Ji, C.; Yao, Y.; Luo, J. Great Amplification of Circular Polarization Sensitivity via Heterostructure Engineering of a Chiral Two-Dimensional Hybrid Perovskite Crystal with a Three-Dimensional MAPbI3 Crystal. ACS Cent. Sci. 2021, 7, 1261–1268. [Google Scholar] [CrossRef]
- Huang, P.-J.; Taniguchi, K.; Shigefuji, M.; Kobayashi, T.; Matsubara, M.; Sasagawa, T.; Sato, H.; Miyasaka, H. Chirality-Dependent Circular Photogalvanic Effect in Enantiomorphic 2D Organic–Inorganic Hybrid Perovskites. Adv. Mater. 2021, 33, 2008611. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Shi, W.; Tang, W.; Liu, Z.; Schroeder, B.C.; Fenwick, O.; Fuchter, M.J. High Responsivity Circular Polarized Light Detectors based on Quasi Two-Dimensional Chiral Perovskite Films. ACS Nano 2022, 16, 2682–2689. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.D.; Shi, W.; Gasparini, N.; Nelson, J.; Wade, J.; Fuchter, M.J. Materials for optical, magnetic and electronic devices. J. Mater. Chem. C 2022, 10, 10452. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, H.; Pan, X.; Xu, J.; Liu, H.; Liu, X.; Khanal, D.R.; Toney, M.F.; Beard, M.C.; Vardeny, Z.V. Spin-Dependent Photovoltaic and Photogalvanic Responses of Optoelectronic Devices Based on Chiral Two-Dimensional Hybrid Organic–Inorganic Perovskites. ACS Nano 2021, 15, 588–595. [Google Scholar] [CrossRef]
- Fan, C.-C.; Han, X.-B.; Liang, B.-D.; Shi, C.; Miao, L.-P.; Chai, C.-Y.; Liu, C.-D.; Ye, Q.; Zhang, W. Chiral Rashba Ferroelectrics for Circularly Polarized Light Detection. Adv. Mater. 2022, 34, e2204119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhang, J.; Di, Y.; Gan, Z. Research Progress on Rashba Effect in Two-Dimensional Organic–Inorganic Hybrid Lead Halide Perovskites. Nanomaterials 2024, 14, 683. https://doi.org/10.3390/nano14080683
Guo J, Zhang J, Di Y, Gan Z. Research Progress on Rashba Effect in Two-Dimensional Organic–Inorganic Hybrid Lead Halide Perovskites. Nanomaterials. 2024; 14(8):683. https://doi.org/10.3390/nano14080683
Chicago/Turabian StyleGuo, Junhong, Jinlei Zhang, Yunsong Di, and Zhixing Gan. 2024. "Research Progress on Rashba Effect in Two-Dimensional Organic–Inorganic Hybrid Lead Halide Perovskites" Nanomaterials 14, no. 8: 683. https://doi.org/10.3390/nano14080683
APA StyleGuo, J., Zhang, J., Di, Y., & Gan, Z. (2024). Research Progress on Rashba Effect in Two-Dimensional Organic–Inorganic Hybrid Lead Halide Perovskites. Nanomaterials, 14(8), 683. https://doi.org/10.3390/nano14080683