Investigation of Field Emission Properties of Carbon Nanotube Arrays of Different Morphologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growing of CNTs
2.2. Research Methods
3. Results and Discussion
3.1. Sample Characterization
3.2. Field Emission Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Jonge, N.; Bonard, J.M. Carbon nanotube electron sources and applications. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2239–2266. [Google Scholar] [CrossRef] [PubMed]
- Milne, W.I.; Teo, K.B.; Amaratunga, G.A.; Legagneux, P.; Gangloff, L.; Schnell, J.P.; Semet, V.; Binh, V.T.; Groening, O. Carbon nanotubes as field emission sources. J. Mater. Chem. 2004, 14, 933–943. [Google Scholar] [CrossRef]
- Robertson, J. Realistic applications of CNTs. Mater. Today 2004, 7, 46–52. [Google Scholar] [CrossRef]
- Zhou, O.; Shimoda, H.; Gao, B.; Oh, S.; Fleming, L.; Yue, G. Materials science of carbon nanotubes: Fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc. Chem. Res. 2002, 35, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Dean, K.A.; Chalamala, B.R. Current saturation mechanisms in carbon nanotube field emitters. Appl. Phys. Lett. 2000, 76, 375–377. [Google Scholar] [CrossRef]
- Paradise, M.; Goswami, T. Carbon nanotubes–production and industrial applications. Mater. Des. 2007, 28, 1477–1489. [Google Scholar] [CrossRef]
- Bocharov, G.S.; Belsky, M.D.; Eletskii, A.V.; Sommerer, T. Electrical field enhancement in carbon nanotube-based electron field cathodes. Fuller. Nanotub. Carbon Nanostruct. 2010, 19, 92–99. [Google Scholar] [CrossRef]
- Sheshin, E.P.; Kolodyazhnyj, A.Y.; Chadaev, N.N.; Getman, A.O.; Danilkin, M.I.; Ozol, D.I. Prototype of cathodoluminescent lamp for general lighting using carbon fiber field emission cathode. J. Vac. Sci. Technol. B 2019, 37, 031213. [Google Scholar] [CrossRef]
- Yoo, S.T.; Lee, J.Y.; Rodiansyah, A.; Yune, T.Y.; Park, K.C. Far UVC light for E. coli disinfection generated by carbon nanotube cold cathode and sapphire anode. Curr. Appl. Phys. 2021, 28, 93–97. [Google Scholar] [CrossRef]
- Kang, S.; Qian, W.; Liu, R.; Yu, H.; Zhu, W.; Liao, X.; Wang, F.; Huang, W.; Dong, C. Miniature vacuum sensor based on gas adsorptions from carbon nanotube field emitters. Vacuum 2023, 207, 111663. [Google Scholar] [CrossRef]
- Amsden, J.J.; Herr, P.J.; Landry, D.M.; Kim, W.; Vyas, R.; Parker, C.B.; Kirley, M.P.; Keil, A.D.; Gilchrist, K.H.; Radauscher, E.J.; et al. Proof of concept coded aperture miniature mass spectrometer using a cycloidal sector mass analyzer, a carbon nanotube (CNT) field emission electron ionization source, and an array detector. J. Am. Soc. Mass Spectrom. 2017, 29, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Grzebyk, T.; Szyszka, P.; Krysztof, M.; Górecka-Drzazga, A.; Dziuban, J. MEMS ion source for ion mobility spectrometry. J. Vac. Sci. Technol. B 2019, 37, 022201. [Google Scholar] [CrossRef]
- Lee, Y.Z.; Puett, C.; Inscoe, C.R.; Jia, B.; Kim, C.; Walsh, R.; Yoon, S.; Kim, S.J.; Kuzmiak, C.M.; Zeng, D.; et al. Initial clinical experience with stationary digital breast tomosynthesis. Acad. Radiol. 2019, 26, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Li, Z.; Zhou, Y. Synthesis and application of carbon nanotubes. J. Nat. Gas Chem. 2006, 15, 235–246. [Google Scholar] [CrossRef]
- Pandey, A.; Prasad, A.; Moscatello, J.P.; Engelhard, M.; Wang, C.; Yap, Y.K. Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds. ACS Nano 2013, 7, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Shimoi, N.; Estrada, A.L.; Tanaka, Y.; Tohji, K. Properties of a field emission lighting plane employing highly crystalline single-walled carbon nanotubes fabricated by simple processes. Carbon 2013, 65, 228–235. [Google Scholar] [CrossRef]
- Laszczyk, K.U. Field emission cathodes to form an electron beam prepared from carbon nanotube suspensions. Micromachines 2020, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Gangele, A.; Sharma, C.S.; Pandey, A.K. Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: A review. J. Nanosci. Nanotechnol. 2017, 17, 2256–2273. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Gupta, S.M.; Sharma, S.K. Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Lett. 2019, 29, 419–447. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Su, Y.; Yang, Z.; Wei, L.; Zhang, Y. Synthesis of straight multi-walled carbon nanotubes by arc discharge in air and their field emission properties. J. Mater. Sci. 2012, 47, 6535–6541. [Google Scholar] [CrossRef]
- Wu, S.X.; Yang, F.; Xue, S.L.; Zhao, X.L. Field Emission Properties of the Single-Wall Carbon Nanotubes Synthesized by Arc-Discharge Method. Adv. Mater. Res. 2012, 535, 465–468. [Google Scholar] [CrossRef]
- Chrzanowska, J.; Hoffman, J.; Małolepszy, A.; Mazurkiewicz, M.; Kowalewski, T.A.; Szymanski, Z.; Stobinski, L. Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys. Status Solidi (B) 2015, 252, 1860–1867. [Google Scholar] [CrossRef]
- Veríssimo, C.; Moshkalyo, S.A.; Ramos, A.; Gonçalves, J.L.; Alves, O.L.; Swart, J.W. Different carbon nanostructured materials obtained in catalytic chemical vapor deposition. J. Braz. Chem. Soc. 2006, 17, 1124–1132. [Google Scholar] [CrossRef]
- Ding, E.X.; Liu, P.; Khan, A.T.; Zhang, Q.; Wei, N.; Jiang, H.; Kauppinen, E.I. Towards the synthesis of semiconducting single-walled carbon nanotubes by floating-catalyst chemical vapor deposition: Challenges of reproducibility. Carbon 2022, 195, 92–100. [Google Scholar] [CrossRef]
- Quang, N.H.; Kim, D.H. Control of growth mode of multiwalled carbon nanotubes. J. Phys. Conf. Ser. 2009, 187, 012065. [Google Scholar] [CrossRef]
- Chhowalla, M.; Teo, K.B.; Ducati, C.; Rupesinghe, N.L.; Amaratunga, G.A.; Ferrari, A.C.; Roy, D.; Robertson, J.; Milne, A.W. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 2001, 90, 5308–5317. [Google Scholar] [CrossRef]
- Kyung, S.J.; Voronko, M.; Lee, Y.H.; Kim, C.W.; Lee, J.H.; Yeom, G.Y. Growth of carbon nanotubes by atmospheric pressure plasma enhanced chemical vapor deposition using NiCr catalyst. Surf. Coat. Technol. 2007, 201, 5378–5382. [Google Scholar] [CrossRef]
- Park, S.; Gupta, A.P.; Yeo, S.J.; Jung, J.; Paik, S.H.; Mativenga, M.; Ryu, J. Carbon nanotube field emitters synthesized on metal alloy substrate by PECVD for customized compact field emission devices to be used in X-ray source applications. Nanomaterials 2018, 8, 378. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Kang, W.P.; Hofmeister, W.H.; Davidson, J.L.; Wong, Y.M.; Huang, J.H. Effects of deposition and synthesis parameters on size, density, structure, and field emission properties of Pd-catalyzed carbon nanotubes synthesized by thermal chemical vapor deposition. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2005, 23, 793–799. [Google Scholar] [CrossRef]
- Lin, C.H.; Lee, S.H.; Hsu, C.M.; Kou, C.T. Comparisons on properties and growth mechanisms of carbon nanotubes fabricated by high-pressure and low-pressure plasma-enhanced chemical vapor deposition. Diam. Relat. Mater. 2004, 13, 2147–2151. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Dang, N.M.; Do Nhat, M.; Nguyen, D.D.; Luong, N.H.; Phan, N.H.; Nguyen, T.H. Hot-filament CVD Growth of Vertically-aligned Carbon Nanotubes on Support Materials for Field Electron Emitters. VNU J. Sci. Math.-Phys. 2020, 36, 98–105. [Google Scholar] [CrossRef]
- Pimenov, S.M.; Frolov, V.D.; Zavedeev, E.V.; Abanshin, N.P.; Du, H.Y.; Chen, W.C.; Chen, L.C.; Wu, J.J.; Chen, K.H. Electron field emission properties of highly dense carbon nanotube arrays. Appl. Phys. A 2011, 105, 11–16. [Google Scholar] [CrossRef]
- Li, D.; Cheng, Y.; Wang, Y.; Zhang, H.; Dong, C.; Li, D. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge. Appl. Surf. Sci. 2016, 365, 10–18. [Google Scholar] [CrossRef]
- Hiep, N.K.; Minh, D.N.; Hai, N.T.; Dung, N.D.; Hai, L.N.; Hong, P.N.; Hong, N.T. Field Emission Properties of Vertically-Aligned Carbon Nanotubes Grown on Stainless Steel by Hot-Filament Chemical Vapor Deposition. Mater. Trans. 2020, 61, 1555–1559. [Google Scholar] [CrossRef]
- Neupane, S.; Yang, Y.; Li, W.; Gao, Y. Synthesis and enhanced electron field emission of vertically aligned carbon nanotubes grown on stainless steel substrate. J. Nanosci. Lett. 2014, 4, 14–20. [Google Scholar] [CrossRef]
- Neupane, S.; Lastres, M.; Chiarella, M.; Li, W.; Su, Q.; Du, G. Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper. Carbon 2012, 50, 2641–2650. [Google Scholar] [CrossRef]
- Teo, K.B.; Chhowalla, M.; Amaratunga, G.A.; Milne, W.I.; Pirio, G.; Legagneux, P.; Wyczisk, F.; Pribat, D.; Hasko, D.G. Field emission from dense, sparse, and patterned arrays of carbon nanofibers. Appl. Phys. Lett. 2002, 80, 2011–2013. [Google Scholar] [CrossRef]
- Lim, S.H.; Moon, J.H.; Yoon, H.S.; Park, K.C.; Jang, J. 25.1: Field Emission from Carbon Nanotubes Grown by a Triode-type DC Plasma Enhanced CVD. In SID Symposium Digest of Technical Papers; Blackwell Publishing Ltd.: Oxford, UK, 2004; Volume 35, pp. 924–927. [Google Scholar] [CrossRef]
- Koshtyal, Y.; Nazarov, D.; Ezhov, I.; Mitrofanov, I.; Kim, A.; Rymyantsev, A.; Lyutakov, O.; Popovich, A.; Maximov, M. Atomic layer deposition of NiO to produce active material for thin-film lithium-ion batteries. Coatings 2019, 9, 301. [Google Scholar] [CrossRef]
- Koshtyal, Y.; Mitrofanov, I.; Nazarov, D.; Medvedev, O.; Kim, A.; Ezhov, I.; Rumyantsev, A.; Popovich, A.; Maximov, M.Y. Atomic layer deposition of Ni-Co-O thin-film electrodes for solid-state libs and the influence of chemical composition on overcapacity. Nanomaterials 2021, 11, 907. [Google Scholar] [CrossRef]
- Filatov, L.; Vishniakov, P.; Ezhov, I.; Gorbov, I.; Nazarov, D.; Olkhovskii, D.; Kumar, R.; Peng, S.; He, G.; Chernyavsky, V.; et al. Application of NiO deposited by atomic layer deposition for carbon nanotubes catalytic growth. Mater. Lett. 2023, 353, 135250. [Google Scholar] [CrossRef]
- Wen, J.G.; Huang, Z.P.; Wang, D.Z.; Chen, J.H.; Yang, S.X.; Ren, Z.F.; Reed, M.A. Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films. J. Mater. Res. 2001, 16, 3246–3253. [Google Scholar] [CrossRef]
- Jönsson, M.; Nerushev, O.A.; Campbell, E.E. Dc plasma-enhanced chemical vapour deposition growth of carbon nanotubes and nanofibres: In Situ spectroscopy and plasma current dependence. Appl. Phys. A 2007, 88, 261–267. [Google Scholar] [CrossRef]
- Jeong, K.Y.; Jung, H.K.; Lee, H.W. Effective parameters on diameter of carbon nanotubes by plasma enhanced chemical vapor deposition. Trans. Nonferrous Met. Soc. China 2012, 22, s712–s716. [Google Scholar] [CrossRef]
- Popov, E.O.; Kolosko, A.G.; Filippov, S.V.; Terukov, E.I.; Ryazanov, R.M.; Kitsyuk, E.P. Comparison of macroscopic and microscopic emission characteristics of large area field emitters based on carbon nanotubes and graphene. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2020, 38, 043203. [Google Scholar] [CrossRef]
- Zhang, L.; Hashimoto, Y.; Taishi, T.; Ni, Q.Q. Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes. Appl. Surf. Sci. 2011, 257, 1845–1849. [Google Scholar] [CrossRef]
- Jorio, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Determination of nanotubes properties by Raman spectroscopy. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2311–2336. [Google Scholar] [CrossRef]
- Osswald, S.; Havel, M.; Gogotsi, Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. Int. J. Orig. Work. All Asp. Raman Spectrosc. Incl. High. Order Process. Also Brillouin Rayleigh Scatt. 2007, 38, 728–736. [Google Scholar] [CrossRef]
- Shrednik, V.N. Field emission theory. In Unheated Cathodes; Elinson, M.I., Ed.; Sovietskoe Radio: Moscow, Russia, 1974; Chapter 6; pp. 165–207. (In Russian) [Google Scholar]
- Gao, R.; Pan, Z.; Wang, Z.L. Work function at the tips of multiwalled carbon nanotubes. Appl. Phys. Lett. 2001, 78, 1757–1759. [Google Scholar] [CrossRef]
- Popov, E.O.; Kolosko, A.G.; Filippov, S.V. Electrical field admissible values for the classical field emitter regime in the study of large area emitters. AIP Adv. 2019, 9, 015129. [Google Scholar] [CrossRef]
No. | Sample Description | Eth, V/µm | Eon, V/µm | Emax, V/µm | Jmax, µA/cm2 | βeff |
---|---|---|---|---|---|---|
C1 | Discrete CNTs (length 200 nm) | 6.5 | 8.1 | 11.6 | 936.6 | 1100 |
C2 | Thick-cover CNTs (length 20 µm) | 2.3 | 3.0 | 4.53 | 2880 | 2821 |
C3 | Dense CNTs (length 7 µm) | 9.0 | 9.8 | 13.3 | 93.5 | 617 |
C4 | Dense CNTs (length 300 nm) | 4.8 | 6.1 | 11.5 | 2862.9 | 1380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chumak, M.A.; Shchegolkov, A.V.; Popov, E.O.; Filippov, S.V.; Kolosko, A.G.; Shchegolkov, A.V.; Babaev, A.A. Investigation of Field Emission Properties of Carbon Nanotube Arrays of Different Morphologies. Nanomaterials 2024, 14, 763. https://doi.org/10.3390/nano14090763
Chumak MA, Shchegolkov AV, Popov EO, Filippov SV, Kolosko AG, Shchegolkov AV, Babaev AA. Investigation of Field Emission Properties of Carbon Nanotube Arrays of Different Morphologies. Nanomaterials. 2024; 14(9):763. https://doi.org/10.3390/nano14090763
Chicago/Turabian StyleChumak, Maksim A., Alexander V. Shchegolkov, Eugeni O. Popov, Sergey V. Filippov, Anatoly G. Kolosko, Aleksei V. Shchegolkov, and Arif A. Babaev. 2024. "Investigation of Field Emission Properties of Carbon Nanotube Arrays of Different Morphologies" Nanomaterials 14, no. 9: 763. https://doi.org/10.3390/nano14090763