Synthesis, Surface Modification and Magnetic Properties Analysis of Heat-Generating Cobalt-Substituted Magnetite Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation and Coating
2.1.1. Reagents
2.1.2. Synthesis of Co-Doped Magnetite
2.1.3. The Surface Modification of Nanoparticles
2.2. Characterization Techniques
3. Results and Discussion
3.1. Formation of Nanoparticles and (Micro)Structural Analysis of Co-Doped Magnetite
3.2. Coating and Colloidal Properties of Co-Doped Magnetite Nanoparticles
3.3. Magnetic Properties and Heating Efficacy of Co-Doped Magnetite
3.4. XPS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics 2020, 10, 3793–3815. [Google Scholar] [CrossRef] [PubMed]
- De Mello, L.B.; Varanda, L.C.; Sigoli, F.A.; Mazali, I.O. Co-Precipitation Synthesis of (Zn-Mn)-Co-Doped Magnetite Nanoparticles and Their Application in Magnetic Hyperthermia. J. Alloys Compd. 2019, 779, 698–705. [Google Scholar] [CrossRef]
- Fuentes-García, J.A.; Sanz, B.; Mallada, R.; Ibarra, M.R.; Goya, G.F. Magnetic Nanofibers for Remotely Triggered Catalytic Activity Applied to the Degradation of Organic Pollutants. Mater. Des. 2023, 226, 111615. [Google Scholar] [CrossRef]
- Gallo-Cordova, A.; Lemus, J.; Palomares, F.J.; Morales, M.P.; Mazarío, E. Superparamagnetic Nanosorbent for Water Purification: Assessment of the Adsorptive Removal of Lead and Methyl Orange from Aqueous Solutions. Sci. Total Environ. 2020, 711, 134644. [Google Scholar] [CrossRef]
- Gallo-Cordova, A.; Castro, J.J.; Winkler, E.L.; Lima, E.; Zysler, R.D.; Morales, M.D.P.; Ovejero, J.G.; Streitwieser, D.A. Improving Degradation of Real Wastewaters with Self-Heating Magnetic Nanocatalysts. J. Clean. Prod. 2021, 308, 127385. [Google Scholar] [CrossRef]
- Wang, J.L.; Xu, L.J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- Antic, B.; Kremenović, A.; Nikolic, A.S.; Stoiljkovic, M. Cation Distribution and Size-Strain Microstructure Analysis in Ultrafine Zn−Mn Ferrites Obtained from Acetylacetonato Complexes. J. Phys. Chem. B 2004, 108, 12646–12651. [Google Scholar] [CrossRef]
- Osaci, M.; Cacciola, M. About the Influence of the Colloidal Magnetic Nanoparticles Coating on the Specific Loss Power in Magnetic Hyperthermia. J. Magn. Magn. Mater. 2021, 519, 167451. [Google Scholar] [CrossRef]
- Portilla, Y.; Mulens-Arias, V.; Paradela, A.; Ramos-Fernández, A.; Pérez-Yagüe, S.; Morales, M.P.; Barber, D.F. The Surface Coating of Iron Oxide Nanoparticles Drives Their Intracellular Trafficking and Degradation in Endolysosomes Differently Depending on the Cell Type. Biomaterials 2022, 281, 121365. [Google Scholar] [CrossRef]
- Ognjanović, M.; Stanković, D.M.; Jaćimović, Ž.K.; Kosović-Perutović, M.; Dojčinović, B.; Antić, B. The Effect of Surface-Modifier of Magnetite Nanoparticles on Electrochemical Detection of Dopamine and Heating Efficiency in Magnetic Hyperthermia. J. Alloys Compd. 2021, 884, 161075. [Google Scholar] [CrossRef]
- Mohammadi, M.A.; Asghari, S.; Aslibeiki, B. Surface Modified Fe3O4 Nanoparticles: A Cross-Linked Polyethylene Glycol Coating Using Plasma Treatment. Surf. Interfaces 2021, 25, 101271. [Google Scholar] [CrossRef]
- Portilla, Y.; Mellid, S.; Paradela, A.; Ramos-Fernández, A.; Daviu, N.; Sanz-Ortega, L.; Pérez-Yagüe, S.; Morales, M.P.; Barber, D.F. Iron Oxide Nanoparticle Coatings Dictate Cell Outcomes Despite the Influence of Protein Coronas. ACS Appl. Mater. Interfaces 2021, 13, 7924–7944. [Google Scholar] [CrossRef]
- Liu, X.L.; Fan, H.M.; Yi, J.B.; Yang, Y.; Choo, E.S.G.; Xue, J.M.; Fan, D.D.; Ding, J. Optimization of Surface Coating on Fe3O4 Nanoparticles for High Performance Magnetic Hyperthermia Agents. J. Mater. Chem. 2012, 22, 8235. [Google Scholar] [CrossRef]
- Thakur, N.; Aggarwal, V.; Manna, P.; Singh, N.M.; Pabbathi, A.; Das, J. A Comprehensive Review on the Synthesis, Anticancer, Antibacterial and Photocatalytic Applications of Nanoferrites. Surf. Interfaces 2023, 42, 103525. [Google Scholar] [CrossRef]
- Sarimov, R.M.; Serov, D.A.; Gudkov, S.V. Biological Effects of Magnetic Storms and ELF Magnetic Fields. Biology 2023, 12, 1506. [Google Scholar] [CrossRef]
- Qu, J.; Liu, G.; Wang, Y.; Hong, R. Preparation of Fe3O4–Chitosan Nanoparticles Used for Hyperthermia. Adv. Powder Technol. 2010, 21, 461–467. [Google Scholar] [CrossRef]
- Ma, Y.-H.; Wu, S.-Y.; Wu, T.; Chang, Y.-J.; Hua, M.-Y.; Chen, J.-P. Magnetically Targeted Thrombolysis with Recombinant Tissue Plasminogen Activator Bound to Polyacrylic Acid-Coated Nanoparticles. Biomaterials 2009, 30, 3343–3351. [Google Scholar] [CrossRef]
- Chen, J.-P.; Yang, P.-C.; Ma, Y.-H.; Wu, T. Characterization of Chitosan Magnetic Nanoparticles for in Situ Delivery of Tissue Plasminogen Activator. Carbohydr. Polym. 2011, 84, 364–372. [Google Scholar] [CrossRef]
- Bean, C.P.; Livingston, J.D. Superparamagnetism. J. Appl. Phys. 1959, 30, S120–S129. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Asri, N.S.; Tetuko, A.P.; Esmawan, A.; Addin, M.; Setiadi, E.A.; Putri, W.B.K.; Ginting, M.; Sebayang, P. Syntheses of Ferrofluids Using Polyethylene Glycol (PEG) Coated Magnetite (Fe3O4), Citric Acid, and Water as the Working Liquid in a Cylindrical Heat Pipe. Nano-Struct. Nano-Objects 2021, 25, 100654. [Google Scholar] [CrossRef]
- Phong, L.T.H.; Manh, D.H.; Nam, P.H.; Lam, V.D.; Khuyen, B.X.; Tung, B.S.; Bach, T.N.; Tung, D.K.; Phuc, N.X.; Hung, T.V.; et al. Structural, Magnetic and Hyperthermia Properties and Their Correlation in Cobalt-Doped Magnetite Nanoparticles. RSC Adv. 2022, 12, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Dutz, S.; Buske, N.; Landers, J.; Gräfe, C.; Wende, H.; Clement, J.H. Biocompatible Magnetic Fluids of Co-Doped Iron Oxide Nanoparticles with Tunable Magnetic Properties. Nanomaterials 2020, 10, 1019. [Google Scholar] [CrossRef] [PubMed]
- Rajan, A.; Sahu, N.K. Review on Magnetic Nanoparticle-Mediated Hyperthermia for Cancer Therapy. J. Nanopart. Res. 2020, 22, 319. [Google Scholar] [CrossRef]
- Na, J.G.; Lee, T.D.; Park, S.J. Effects of Cation Distribution on the Magnetic and Electrical Properties of Cobalt Ferrite. IEEE Trans. Magn. 1992, 28, 2433–2435. [Google Scholar] [CrossRef]
- Sawatzky, G.A.; Van Der Woude, F.; Morrish, A.H. Cation Distributions in Octahedral and Tetrahedral Sites of the Ferrimagnetic Spinel CoFe2O4. J. Appl. Phys. 1968, 39, 1204–1205. [Google Scholar] [CrossRef]
- El-Sayed, H.M.; Ali, I.A.; Azzam, A.; Sattar, A.A. Influence of the Magnetic Dead Layer Thickness of Mg-Zn Ferrites Nanoparticle on Their Magnetic Properties. J. Magn. Magn. Mater. 2017, 424, 226–232. [Google Scholar] [CrossRef]
- Mamiya, H.; Furukawa, I.; Huaman, J.L.C.; Suzuki, K.; Miyamura, H.; Jeyadevan, B. Evaluation of Interparticle Interactions between Magnetic Nanoparticles Using First Order Reversal Curves and Weiss Temperature. J. Phys. Commun. 2021, 5, 045003. [Google Scholar] [CrossRef]
- Wells, J.; Ortega, D.; Steinhoff, U.; Dutz, S.; Garaio, E.; Sandre, O.; Natividad, E.; Cruz, M.M.; Brero, F.; Southern, P.; et al. Challenges and Recommendations for Magnetic Hyperthermia Characterization Measurements. Int. J. Hyperth. 2021, 38, 447–460. [Google Scholar] [CrossRef]
- Ring, H.L.; Sharma, A.; Ivkov, R.; Bischof, J.C. The Impact of Data Selection and Fitting on SAR Estimation for Magnetic Nanoparticle Heating. Int. J. Hyperth. 2020, 37, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, C.; Efthimiadou, E.K.; Pissas, M.; Fuentes, D.; Boukos, N.; Psycharis, V.; Kordas, G.; Loukopoulos, V.C.; Kagadis, G.C. Magnetic Fluid Hyperthermia Simulations in Evaluation of SAR Calculation Methods. Phys. Medica 2020, 71, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Deatsch, A.E.; Evans, B.A. Heating Efficiency in Magnetic Nanoparticle Hyperthermia. J. Magn. Magn. Mater. 2014, 354, 163–172. [Google Scholar] [CrossRef]
- Radu, T.; Iacovita, C.; Benea, D.; Turcu, R. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles. Appl. Surf. Sci. 2017, 405, 337–343. [Google Scholar] [CrossRef]
- Gota, S.; Guiot, E.; Henriot, M.; Gautier-Soyer, M. Atomic-Oxygen-Assisted MBE Growth of α−Fe2O3 on α−Al2O3 (0001): Metastable FeO(111)-like Phase at Subnanometer Thicknesses. Phys. Rev. B 1999, 60, 14387–14395. [Google Scholar] [CrossRef]
- Gallo-Cordova, A.; Veintemillas-Verdaguer, S.; Tartaj, P.; Mazarío, E.; Morales, M.D.P.; Ovejero, J.G. Engineering Iron Oxide Nanocatalysts by a Microwave-Assisted Polyol Method for the Magnetically Induced Degradation of Organic Pollutants. Nanomaterials 2021, 11, 1052. [Google Scholar] [CrossRef] [PubMed]
- Blin, J.-L.; Michelin, L.; Lebeau, B.; Naydenov, A.; Velinova, R.; Kolev, H.; Gaudin, P.; Vidal, L.; Dotzeva, A.; Tenchev, K.; et al. Co–Ce Oxides Supported on SBA-15 for VOCs Oxidation. Catalysts 2021, 11, 366. [Google Scholar] [CrossRef]
- Grahovski, B.; Velinova, R.; Shestakova, P.; Naydenov, A.; Kolev, H.; Yordanova, I.; Ivanov, G.; Tenchev, K.; Todorova, S. Catalytic Oxidation of VOC over Cobalt-Loaded Hierarchical MFI Zeolite. Catalysts 2023, 13, 834. [Google Scholar] [CrossRef]
- Yordanova, I.; Hristov, S.; Kolev, H.; Todorova, S.; Naydenov, A. Cobalt-Manganese Ion-Exchanged Clinoptilolite Supported Catalysts for n-Hexane Oxidation. Catal. Today 2023, 423, 114267. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Shyichuk, A.; Danyliuk, N.; Naushad, M.; Kotsyubynsky, V.; Boychuk, V. Cobalt Ferrite as an Electromagnetically Boosted Metal Oxide Hetero-Fenton Catalyst for Water Treatment. Chemosphere 2023, 326, 138364. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans—A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef] [PubMed]
# | Chemical Composition (Targeted) | Chemical Composition (ICP-OES) | DXRPD (nm) | a (Å) | DTEM (nm) | σTEM (nm) | PdI (%) |
---|---|---|---|---|---|---|---|
S1 | Co0.05Fe2.95O4 | Co0.047Fe2.953O4 | 10.0 (7) | 8.3690 (8) | 12.5 ± 0.8 | 0.2522 | 19.2 |
S2 | Co0.1Fe2.9O4 | Co0.086Fe2.914O4 | 9.5 (2) | 8.3782 (8) | 11.5 ± 0.9 | 0.2593 | 20.4 |
# | Ms (emu g−1) | davg (nm) | σ (nm) |
---|---|---|---|
S1 | 71 * | 9 | 3 |
S2 | 75 | 8 | 2 |
# | Chemical Composition | C1s | O1s | Cl2p | Fe2p | Co2p | ||
---|---|---|---|---|---|---|---|---|
S1 | Co0.047Fe2.953O4 | 47.01 | 38.37 | 1.47 | 7.44 | 5.43 | 0.27 | 0.02 |
S2 | Co0.086Fe2.914O4 | 31.41 | 45.92 | 2.51 | 7.94 | 11.74 | 0.43 | 0.05 |
Ox. state | Fe2+ | Fe3+ | Co2+ | Co3+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ognjanović, M.; Bošković, M.; Kolev, H.; Dojčinović, B.; Vranješ-Đurić, S.; Antić, B. Synthesis, Surface Modification and Magnetic Properties Analysis of Heat-Generating Cobalt-Substituted Magnetite Nanoparticles. Nanomaterials 2024, 14, 782. https://doi.org/10.3390/nano14090782
Ognjanović M, Bošković M, Kolev H, Dojčinović B, Vranješ-Đurić S, Antić B. Synthesis, Surface Modification and Magnetic Properties Analysis of Heat-Generating Cobalt-Substituted Magnetite Nanoparticles. Nanomaterials. 2024; 14(9):782. https://doi.org/10.3390/nano14090782
Chicago/Turabian StyleOgnjanović, Miloš, Marko Bošković, Hristo Kolev, Biljana Dojčinović, Sanja Vranješ-Đurić, and Bratislav Antić. 2024. "Synthesis, Surface Modification and Magnetic Properties Analysis of Heat-Generating Cobalt-Substituted Magnetite Nanoparticles" Nanomaterials 14, no. 9: 782. https://doi.org/10.3390/nano14090782
APA StyleOgnjanović, M., Bošković, M., Kolev, H., Dojčinović, B., Vranješ-Đurić, S., & Antić, B. (2024). Synthesis, Surface Modification and Magnetic Properties Analysis of Heat-Generating Cobalt-Substituted Magnetite Nanoparticles. Nanomaterials, 14(9), 782. https://doi.org/10.3390/nano14090782