Field Emission from Carbon Nanotubes on Titanium Nitride-Coated Planar and 3D-Printed Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Structural and Electrical Characterization Methods
3. Results and Discussion
3.1. CNT Morphology
3.2. Field Emission from CNTs on Planar Substrates
3.3. Field Emission from CNTs on 3D-Printed Substrates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Norizan, M.N.; Moklis, M.H.; Ngah Demon, S.Z.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Adv. 2020, 10, 43704–43732. [Google Scholar] [CrossRef] [PubMed]
- Nurazzi, N.M.; Sabaruddin, F.A.; Harussani, M.M.; Kamarudin, S.H.; Rayung, M.; Asyraf, M.R.M.; Aisyah, H.A.; Norrrahim, M.N.F.; Ilyas, R.A.; Abdullah, N.; et al. Mechanical performance and applications of CNTs reinforced polymer composites—A review. Nanomaterials 2021, 11, 2186. [Google Scholar] [CrossRef]
- Lee, S.W.; Yabuuchi, N.; Gallant, B.M.; Chen, S.; Kim, B.S.; Hammond, P.T.; Shao-Horn, Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 2010, 5, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Habisreutinger, S.N.; Nicholas, R.J.; Snaith, H.J. Carbon nanotubes in perovskite solar cells. Adv. Energy Mater. 2017, 7, 1601839. [Google Scholar] [CrossRef]
- Jeon, H.R.; Park, J.H.; Shon, M.Y. Corrosion protection by epoxy coating containing multi-walled carbon nanotubes. J. Ind. Eng. Chem. 2013, 19, 849–853. [Google Scholar] [CrossRef]
- Giubileo, F.; Di Bartolomeo, A.; Iemmo, L.; Luongo, G.; Urban, F. Field emission from carbon nanostructures. Appl. Sci. 2018, 8, 526. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, G.J. Electrical Conductivity of Carbon Nanotube- and Graphene-Based Nanocomposites. In Micromechanics and Nanomechanics of Composite Solids, 1st ed.; Meguid, S.A., Weng, G.J., Eds.; Springer: Cham, Switzerland, 2018; pp. 123–156. [Google Scholar]
- Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef]
- Mittal, G.; Lahiri, I. Recent progress in nanostructured next-generation field emission devices. J. Phys. D. Appl. Phys. 2014, 47, 323001. [Google Scholar] [CrossRef]
- Moyer-Vanderburgh, K.; Park, S.J.; Fornasiero, F. Growth of carbon nanotube forests on flexible metal substrates: Advances, challenges, and applications. Carbon N. Y. 2023, 206, 402–421. [Google Scholar] [CrossRef]
- Hiraoka, T.; Yamada, T.; Hata, K.; Futaba, D.N.; Kurachi, H.; Uemura, S.; Yumura, M.; Iijima, S. Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 2006, 128, 13338–13339. [Google Scholar] [CrossRef]
- García-Céspedes, J.; Álvarez-García, J.; Zhang, X.; Hampshire, J.; Bertran, E. Optimal deposition conditions of TiN barrier layers for the growth of vertically aligned carbon nanotubes onto metallic substrates. J. Phys. D. Appl. Phys. 2009, 42, 104002. [Google Scholar] [CrossRef]
- Rao, A.M.; Jacques, D.; Haddon, R.C.; Zhu, W.; Bower, C.; Jin, S. In situ-grown carbon nanotube array with excellent field emission characteristics. Appl. Phys. Lett. 2000, 76, 3813–3815. [Google Scholar] [CrossRef]
- Han, J.H.; Lee, T.Y.; Kim, D.Y.; Yoo, J.B.; Park, C.Y.; Choi, J.J.; Jung, T.; Han, I.T.; Kim, J.M. Field emission properties of carbon nanotubes grown on Co/TiN coated Ta substrate for cathode in microwave power amplifier. Diam. Relat. Mater. 2004, 13, 987–993. [Google Scholar] [CrossRef]
- Kearney, B.T.; Jugdersuren, B.; Culbertson, J.C.; Desario, P.A.; Liu, X. Substrate and annealing temperature dependent electrical resistivity of sputtered titanium nitride thin films. Thin Solid Films 2018, 661, 78–83. [Google Scholar] [CrossRef]
- Krylov, I.; Qi, Y.; Korchnoy, V.; Weinfeld, K.; Eizenberg, M.; Yalon, E. Role of temperature on structure and electrical properties of titanium nitride films grown by low pressure plasma enhanced atomic layer deposition. J. Vac. Sci. Technol. A 2020, 38, 032403. [Google Scholar] [CrossRef]
- Sundgren, J.E. Structure and properties of TiN coatings. Thin Solid Films 1985, 128, 21–44. [Google Scholar] [CrossRef]
- De los Arcos, T.; Vonau, F.; Garnier, M.G.; Thommen, V.; Boyen, H.-G.; Oelhafen, P.; Düggelin, M.; Mathis, D.; Guggenheim, R. Influence of iron-silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition. Appl. Phys. Lett. 2002, 80, 2383–2385. [Google Scholar] [CrossRef]
- Uh, H.S.; Park, S.S. Hydrogen plasma pretreatment on field emission properties of multiwalled carbon nanotubes grown by microwave PECVD. J. Electrochem. Soc. 2004, 151, H164–H168. [Google Scholar] [CrossRef]
- Zajec, B.; Nemanič, V.; Žumer, M.; Bryan, E.N.; Nemanich, R.J. Ring-shaped field emission patterns from carbon nanotube films. Carbon N. Y. 2011, 49, 3332–3339. [Google Scholar] [CrossRef]
- Baddour, C.E.; Meunier, J.L. Carbon nanotube synthesis on stainless steel for use in a nanotube-titanium nitride nanocomposite. In Proceedings of the 8th IEEE Conference on Nanotechnology, Arlington, TX, USA, 18–21 August 2008; pp. 752–755. [Google Scholar]
- Duy, D.Q.; Kim, H.S.; Yoon, D.M.; Lee, K.J.; Ha, J.W.; Hwang, Y.G.; Lee, C.H.; Cong, B.T. Growth of carbon nanotubes on stainless steel substrates by DC-PECVD. Appl. Surf. Sci. 2009, 256, 1065–1068. [Google Scholar] [CrossRef]
- García-Céspedes, J.; Thomasson, S.; Teo, K.B.K.; Kinloch, I.A.; Milne, W.I.; Pascual, E.; Bertran, E. Efficient diffusion barrier layers for the catalytic growth of carbon nanotubes on copper substrates. Carbon N. Y. 2009, 47, 613–621. [Google Scholar] [CrossRef]
- Kumar, M.; Zhao, X.; Ando, Y.; Iijima, S.; Sharon, M.; Hirahara, K. Carbon nanotubes from camphor by catalytic CVD. Mol. Cryst. Liq. Cryst. 2002, 387, 117–121. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Single-wall and multi-wall carbon nanotubes from camphor—A botanical hydrocarbon. Diam. Relat. Mater. 2003, 12, 1845–1850. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Gigas growth of carbon nanotubes. Def. Sci. J. 2008, 58, 496–503. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. [Google Scholar] [CrossRef] [PubMed]
- Haugg, S.; Hedrich, C.; Mochalski, L.F.; Diaz-Palacio, I.G.; Zierold, R.; Blick, R.H. Enhancement of field emission properties of carbon nanotube forests by direct growth on titanium nitride-coated substrates. In Proceedings of the 36th IEEE International Vacuum Nanoelectronics Conference (IVNC), Cambridge, MA, USA, 10–13 July 2023; pp. 122–124. [Google Scholar]
- Fendler, C.; Denker, C.; Harberts, J.; Bayat, P.; Zierold, R.; Loers, G.; Münzenberg, M.; Blick, R.H. Microscaffolds by direct laser writing for neurite guidance leading to tailor-made neuronal networks. Adv. Biosyst. 2019, 3, 1800329. [Google Scholar] [CrossRef] [PubMed]
- Harberts, J.; Fendler, C.; Teuber, J.; Siegmund, M.; Silva, A.; Rieck, N.; Wolpert, M.; Zierold, R.; Blick, R.H. Toward brain-on-a-chip: Human induced pluripotent stem cell-derived guided neuronal networks in tailor-made 3D nanoprinted microscaffolds. ACS Nano 2020, 14, 13091–13102. [Google Scholar] [CrossRef] [PubMed]
- Assaud, L.; Pitzschel, K.; Hanbücken, M.; Santinacci, L. Highly-conformal TiN thin films grown by thermal and plasma-enhanced atomic layer deposition. ECS J. Solid State Sci. Technol. 2014, 3, P253–P258. [Google Scholar] [CrossRef]
- Peng, J.; Zierold, R. Atomic Layer Deposition of Materials. In Encyclopedia of Condensed Matter Physics, 2nd ed.; Chakraborty, T., Ed.; Academic Press: Oxford, UK, 2024; pp. 716–728. [Google Scholar]
- Lahiri, I.; Wong, J.; Zhou, Z.; Choi, W. Ultra-high current density carbon nanotube field emitter structure on three-dimensional micro-channeled copper. Appl. Phys. Lett. 2012, 101, 063110. [Google Scholar] [CrossRef]
- González Díaz-Palacio, I.; Wenskat, M.; Deyu, G.K.; Hillert, W.; Blick, R.H.; Zierold, R. Thermal annealing of superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition. J. Appl. Phys. 2023, 134, 035301, Erratum in J. Appl. Phys. 2023, 134, 159902. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Rajaura, R.S.; Singhal, I.; Sharma, K.N.; Srivastava, S. Efficient chemical vapour deposition and arc discharge system for production of carbon nano-tubes on a gram scale. Rev. Sci. Instrum. 2019, 90, 123903. [Google Scholar] [CrossRef] [PubMed]
- Weissker, U.; Hampel, S.; Leonhardt, A.; Büchner, B. Carbon nanotubes filled with ferromagnetic materials. Materials 2010, 3, 4387–4427. [Google Scholar] [CrossRef] [PubMed]
- Wulan, P.P.; Sinaga, T.E. The effect of iron-carbon ratio and on carbon nanotube synthesis using camphor and ferrocene as carbon sources in the gauze reactor. South Afr. J. Chem. Eng. 2021, 36, 17–23. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. A simple method of producing aligned carbon nanotubes from an unconventional precursor—Camphor. Chem. Phys. Lett. 2003, 374, 521–526. [Google Scholar] [CrossRef]
- Porro, S.; Musso, S.; Giorcelli, M.; Chiodoni, A.; Tagliaferro, A. Optimization of a thermal-CVD system for carbon nanotube growth. Phys. E Low-Dimens. Syst. Nanostruct. 2007, 37, 16–20. [Google Scholar] [CrossRef]
- Somani, S.P.; Somani, P.R.; Tanemura, M.; Lau, S.P.; Umeno, M. Carbon nanofibers and multiwalled carbon nanotubes from camphor and their field electron emission. Curr. Appl. Phys. 2009, 9, 144–150. [Google Scholar] [CrossRef]
- Ge, L.; Wang, L.; Du, A.; Hou, M.; Rudolph, V.; Zhu, Z. Vertically-aligned carbon nanotube membranes for hydrogen separation. RSC Adv. 2012, 2, 5329–5336. [Google Scholar] [CrossRef]
- Yousefi, A.T.; Bagheri, S.; Shinji, K.; Mahmood, M.R.; Ikeda, S. Highly oriented vertically aligned carbon nanotubes via chemical vapour deposition for key potential application in CNT ropes. Mater. Res. Innov. 2015, 19, 212–216. [Google Scholar] [CrossRef]
- De los Arcos, T.; Garnier, M.G.; Oelhafen, P.; Mathys, D.; Seo, J.W.; Domingo, C.; Vicente García-Ramos, J.; Sánchez-Cortés, S. Strong influence of buffer layer type on carbon nanotube characteristics. Carbon N. Y. 2004, 42, 187–190. [Google Scholar] [CrossRef]
- Wulan, P.P.D.K.; Setiawati, N.S. The effect of mass ratio of ferrocene to camphor as carbon source and reaction time on the growth of carbon nanotubes. E3S Web Conf. 2018, 67, 03037. [Google Scholar] [CrossRef]
- Sen, S.; Raju, M.; Jacob, C. Surface passivation dictated site-selective growth of aligned carbon nanotubes. Nanoscale 2020, 12, 23042–23051. [Google Scholar] [CrossRef] [PubMed]
- Antunes, E.F.; De Resende, V.G.; Mengui, U.A.; Cunha, J.B.M.; Corat, E.J.; Massi, M. Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing. Appl. Surf. Sci. 2011, 257, 8038–8043. [Google Scholar] [CrossRef]
- Kumar, M.; Okazaki, T.; Hiramatsu, M.; Ando, Y. The use of camphor-grown carbon nanotube array as an efficient field emitter. Carbon N. Y. 2007, 45, 1899–1904. [Google Scholar] [CrossRef]
- Han, J.-H.; Lee, T.Y.; Kim, D.Y.; Yoo, J.-B.; Park, C.-Y.; Choi, J.J.; Jung, T.; Han, I.T.; Jung, J.E.; Kim, J.M. High field-emission current of carbon nanotubes grown on TiN-coated Ta substrate for electron emitters in a microwave power amplifier. J. Vac. Sci. Technol. B 2004, 22, 1636–1642. [Google Scholar] [CrossRef]
- Park, J.; Qin, H.; Scalf, M.; Hilger, R.T.; Westphall, M.S.; Smith, L.M.; Blick, R.H. A mechanical nanomembrane detector for time-of-flight mass spectrometry. Nano Lett. 2011, 11, 3681–3684. [Google Scholar] [CrossRef]
- Haugg, S.; Hedrich, C.; Zierold, R.; Blick, R.H. Field emission characteristics of ZnO nanowires grown by catalyst-assisted MOCVD on free-standing inorganic nanomembranes. J. Phys. D. Appl. Phys. 2022, 55, 255104. [Google Scholar] [CrossRef]
- Huang, W.; Qian, W.; Luo, H.; Dong, M.; Shao, H.; Chen, Y.; Liu, X.; Dong, C. Field emission enhancement from directly grown N-doped carbon nanotubes on stainless steel substrates. Vacuum 2022, 198, 110900. [Google Scholar] [CrossRef]
- Dean, K.A.; Chalamala, B.R. Current saturation mechanisms in carbon nanotube field emitters. Appl. Phys. Lett. 2000, 76, 375–377. [Google Scholar] [CrossRef]
- Xu, N.S.; Chen, Y.; Deng, S.Z.; Chen, J.; Ma, X.C.; Wang, E.G. Vacuum gap dependence of field electron emission properties of large area multi-walled carbon nanotube films. J. Phys. D. Appl. Phys. 2001, 34, 1597–1601. [Google Scholar] [CrossRef]
- Chen, L.F.; Ji, Z.G.; Mi, Y.H.; Ni, H.L.; Zhao, H.F. Nonlinear characteristics of the Fowler-Nordheim plots of carbon nanotube field emission. Phys. Scr. 2010, 82, 035602. [Google Scholar] [CrossRef]
- Zhang, P.; Fairchild, S.B.; Back, T.C.; Luo, Y. Field emission from carbon nanotube fibers in varying anode-cathode gap with the consideration of contact resistance. AIP Adv. 2017, 7, 125203. [Google Scholar] [CrossRef]
- Forbes, R.G. The Murphy-Good plot: A better method of analysing field emission data. R. Soc. Open Sci. 2019, 6, 190912. [Google Scholar] [CrossRef] [PubMed]
- Park, C.K.; Kim, J.P.; Yun, S.J.; Lee, S.H.; Park, J.S. Field emission properties of carbon nanotubes grown on a conical tungsten tip for the application of a microfocus X-ray tube. Thin Solid Films 2007, 516, 304–309. [Google Scholar] [CrossRef]
- Allaham, M.M.; Forbes, R.G.; Knápek, A.; Mousa, M.S. Implementation of the orthodoxy test as a validity check on experimental field emission data. J. Electr. Eng. 2020, 71, 37–42. [Google Scholar] [CrossRef]
- Forbes, R.G. Development of a simple quantitative test for lack of field emission orthodoxy. Proc. R. Soc. A 2013, 469, 20130271. [Google Scholar] [CrossRef]
- Smith, R.C.; Forrest, R.D.; Carey, J.D.; Hsu, W.K.; Silva, S.R.P. Interpretation of enhancement factor in nonplanar field emitters. Appl. Phys. Lett. 2005, 87, 013111. [Google Scholar] [CrossRef]
- Hii, K.-F.; Vallance, R.R.; Chikkamaranahalli, S.B.; Mengüc, M.P.; Rao, A.M. Characterizing field emission from individual carbon nanotubes at small distances. J. Vac. Sci. Technol. B 2006, 24, 1081–1087. [Google Scholar] [CrossRef]
- Kotz, F.; Quick, A.S.; Risch, P.; Martin, T.; Hoose, T.; Thiel, M.; Helmer, D.; Rapp, B.E. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv. Mater. 2021, 33, 2006341. [Google Scholar] [CrossRef]
- Forbes, R.G.; Edgcombe, C.J.; Valdrè, U. Some comments on models for field enhancement. Ultramicroscopy 2003, 95, 57–65. [Google Scholar] [CrossRef]
- Biswas, D. Schottky conjecture and beyond. J. Vac. Sci. Technol. B 2020, 38, 023208. [Google Scholar] [CrossRef]
- Haugg, S.; Makumi, S.; Velten, S.; Zierold, R.; Aksamija, Z.; Blick, R.H. Thermally driven field emission from zinc oxide wires on a nanomembrane used as a detector for time-of-flight mass spectrometry. ACS Omega 2024, 9, 10602–10609. [Google Scholar] [CrossRef] [PubMed]
Substrate | Turn-On Field/V/µm | Apparent FEF |
---|---|---|
Si | 1.48 ± 0.02 | 3591 ± 552 |
TiN on Si | 1.03 ± 0.01 | 4974 ± 649 |
SiN | 2.93 ± 0.04 | 1169 ± 49 |
TiN on SiN | 1.20 ± 0.03 | 3681 ± 386 |
SiN NM | 1.63 ± 0.04 | 2404 ± 272 |
TiN on SiN NM | 1.36 ± 0.07 | 4042 ± 865 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haugg, S.; Mochalski, L.-F.; Hedrich, C.; González Díaz-Palacio, I.; Deneke, K.; Zierold, R.; Blick, R.H. Field Emission from Carbon Nanotubes on Titanium Nitride-Coated Planar and 3D-Printed Substrates. Nanomaterials 2024, 14, 781. https://doi.org/10.3390/nano14090781
Haugg S, Mochalski L-F, Hedrich C, González Díaz-Palacio I, Deneke K, Zierold R, Blick RH. Field Emission from Carbon Nanotubes on Titanium Nitride-Coated Planar and 3D-Printed Substrates. Nanomaterials. 2024; 14(9):781. https://doi.org/10.3390/nano14090781
Chicago/Turabian StyleHaugg, Stefanie, Luis-Felipe Mochalski, Carina Hedrich, Isabel González Díaz-Palacio, Kristian Deneke, Robert Zierold, and Robert H. Blick. 2024. "Field Emission from Carbon Nanotubes on Titanium Nitride-Coated Planar and 3D-Printed Substrates" Nanomaterials 14, no. 9: 781. https://doi.org/10.3390/nano14090781