Electrochemical Sensing Device for Carboplatin Monitoring in Proof-of-Concept Drug Delivery Nanosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Electrochemical Cell Printing and Characterization
2.2.2. Electrochemical Measurements
2.2.3. Carboplatin Loading
2.2.4. Carboplatin Release
2.2.5. Spectrophotometric Measurements
2.2.6. Statistical Analysis
3. Results and Discussions
3.1. Electrochemical Cell Development
3.2. Electrochemical Behavior of CBP
3.2.1. Influence of the pH
3.2.2. Influence of the Scan Rate
3.3. Analytical Parameters
3.4. Selectivity Studies
3.5. Real Sample Analysis
3.5.1. Evaluation of the Robustness of the Applied Electrochemical Method for CBP Detection in Serum, Saliva, and Tears
3.5.2. Comparison between DPV and UV–Vis Methods
3.6. Spectrophotometric Studies
3.7. Application of the Electrochemical Method for the Characterization of Pharmaceutical Formulations
3.7.1. Evaluation of the CBP Loading Process
3.7.2. Evaluation of the CBP Release Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023, 618, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Dagher, O.K.; Schwab, R.D.; Brookens, S.K.; Posey, A.D., Jr. Advances in cancer immunotherapies. Cell 2023, 186, 1814–1814.e1. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Nabae, H.; Funabora, Y.; Suzumori, K. Controlling a peristaltic robot inspired by inchworms. Biomim. Intell. Robot. 2024, 4, 100146. [Google Scholar] [CrossRef]
- Mao, Z.; Peng, Y.; Hu, C.; Ding, R.; Yamada, Y.; Maeda, S. Soft computing-based predictive modeling of flexible electrohydrodynamic pumps. Biomim. Intell. Robot. 2023, 3, 100114. [Google Scholar] [CrossRef]
- Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S.; Tong, R.; Miao, Y.B.; Cai, L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 418. [Google Scholar] [CrossRef] [PubMed]
- Aloss, K.; Hamar, P. Recent Preclinical and Clinical Progress in Liposomal Doxorubicin. Pharmaceutics 2023, 15, 893. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, N.; Yasuda, M.; Takahashi, F.; Isonishi, S.; Jobo, T.; Aoki, D.; Tsuda, H.; Sugiyama, T.; Kodama, S.; Kimura, E.; et al. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: A phase 3, open-label, randomised controlled trial. Lancet 2009, 374, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Di Maio, M.; Chiodini, P.; Rudd, R.M.; Okamoto, H.; Skarlos, D.V.; Früh, M.; Qian, W.; Tamura, T.; Samantas, E.; et al. Carboplatin- or cisplatin-based chemotherapy in first-line treatment of small-cell lung cancer: The COCIS meta-analysis of individual patient data. J. Clin. Oncol. 2012, 30, 1692–1698. [Google Scholar] [CrossRef]
- Cohen, M.H.; Chen, H.; Shord, S.; Fuchs, C.; He, K.; Zhao, H.; Sickafuse, S.; Keegan, P.; Pazdur, R. Approval summary: Cetuximab in combination with cisplatin or carboplatin and 5-fluorouracil for the first-line treatment of patients with recurrent locoregional or metastatic squamous cell head and neck cancer. Oncologist 2013, 18, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.E.; Raza, A.; Koohi Moftakhari Esfahani, M.; Akbarzadeh, A.; Abdollahi, S.H.; Ebrahimi Shahmabadi, H. Carboplatin Niosomal Nanoplatform for Potentiated Chemotherapy. J. Pharm. Sci. 2022, 111, 3029–3037. [Google Scholar] [CrossRef] [PubMed]
- Esim, O.; Gedik, M.E.; Dogan, A.L.; Gunaydin, G.; Hascicek, C. Development of carboplatin loaded bovine serum albumin nanoparticles and evaluation of its effect on an ovarian cancer cell line. J. Drug Deliv. Sci. Technol. 2021, 64, 102655. [Google Scholar] [CrossRef]
- Danışman-Kalındemirtaş, F.; Kariper, İ.A.; Erdemir, G.; Sert, E.; Erdem-Kuruca, S. Evaluation of anticancer effects of carboplatin–gelatin nanoparticles in different sizes synthesized with newly self-assembly method by exposure to IR light. Sci. Rep. 2022, 12, 10686. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, I.; Nassar, M.Y.; Gomaa, A. In-vitro Investigation of the Anticancer Efficacy of Carboplatin-Loaded Chitosan Nanocomposites Against Breast and Liver Cancer Cell Lines. J. Polym. Environ. 2023, 31, 1102–1115. [Google Scholar] [CrossRef]
- Shamim, M.; Perveen, M.; Nazir, S.; Hussnain, M.; Mehmood, R.; Khan, M.I.; Iqbal, J. DFT study of therapeutic potential of graphitic carbon nitride (g-C3N4) as a new drug delivery system for carboplatin to treat cancer. J. Mol. Liq. 2021, 331, 115607. [Google Scholar] [CrossRef]
- Demir Duman, F.; Monaco, A.; Foulkes, R.; Becer, C.R.; Forgan, R.S. Glycopolymer-Functionalized MOF-808 Nanoparticles as a Cancer-Targeted Dual Drug Delivery System for Carboplatin and Floxuridine. ACS Appl. Nano Mater. 2022, 5, 13862–13873. [Google Scholar] [CrossRef]
- Moeung, S.; Chevreau, C.; Broutin, S.; Guitton, J.; Lelièvre, B.; Ciccolini, J.; Massart, C.; Fléchon, A.; Delva, R.; Gravis, G.; et al. Therapeutic Drug Monitoring of Carboplatin in High-Dose Protocol (TI-CE) for Advanced Germ Cell Tumors: Pharmacokinetic Results of a Phase II Multicenter Study. Clin. Cancer Res. 2017, 23, 7171–7179. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, F.M.; Jahangir, T.M.; Khuhawar, M.Y.; Khaskheli, M.I.; Khokhar, L.A.; Abro, M.I.; Khaskheli, M.A.; Muqaddisa, P. Analysis of platinum-based anticancer injections cisplatin and carboplatin in blood serum and urine of cancer patients by photometry, fluorometry, liquid chromatography using a Schiff-base as derivatizing reagent. J. Pharm. Biomed. Anal. 2024, 238, 115808. [Google Scholar] [CrossRef] [PubMed]
- DesJardins, C.; Saxton, P.; Lu, S.X.; Li, X.; Rowbottom, C.; Wong, Y.N. A high-performance liquid chromatography-tandem mass spectrometry method for the clinical combination study of carboplatin and anti-tumor agent eribulin mesylate (E7389) in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 875, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, Y.; Ida, M.; LaFayette, A.; Fast, D.M. Determination of carboplatin in human plasma using HybridSPE-precipitation along with liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 2162–2170. [Google Scholar] [CrossRef] [PubMed]
- Nussbaumer, S.; Fleury-Souverain, S.; Schappler, J.; Rudaz, S.; Veuthey, J.L.; Bonnabry, P. Quality control of pharmaceutical formulations containing cisplatin, carboplatin, and oxaliplatin by micellar and microemulsion electrokinetic chromatography (MEKC, MEEKC). J. Pharm. Biomed. Anal. 2011, 55, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Alarfaj, N.A.; El-Tohamy, M.F. Evaluation of chemotherapy drugs carboplatin and temozolamide in pharmaceutical formulations and biosamples via capillary zone electrophoresis approach. Int. J. Electrochem. Sci. 2018, 13, 4512–4525. [Google Scholar] [CrossRef]
- Alanazi, A.Z.; Alhazzani, K.; Mahmoud, A.M.; Ali, A.M.B.H.; El-Wekil, M.M. Advanced fluorescence-based determination of carboplatin, a potent anticancer agent, with tripeptide-functionalized copper nanoclusters. Microchem. J. 2024, 199, 110000. [Google Scholar] [CrossRef]
- Islam, M.S.; Banik, S.; Collinson, M.M. Recent Advances in Bimetallic Nanoporous Gold Electrodes for Electrochemical Sensing. Nanomaterials 2023, 13, 2515. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Ma, J.; Li, Y.; Xiao, X.; Zhang, M.; Wang, H.; Zhu, N.; Hou, C.; Ulstrup, J. Electrochemical sensing fibers for wearable health monitoring devices. Biosens. Bioelectron. 2024, 246, 115890. [Google Scholar] [CrossRef] [PubMed]
- Paimard, G.; Ghasali, E.; Baeza, M. Screen-Printed Electrodes: Fabrication, Modification, and Biosensing Applications. Chemosensors 2023, 11, 113. [Google Scholar] [CrossRef]
- Le Luu, H.T.; Nachtigal, M.W.; Kuss, S. Electrochemical characterization of carboplatin at unmodified platinum electrodes and its application to drug consumption studies in ovarian cancer cells. J. Electroanal. Chem. 2020, 872, 114253. [Google Scholar] [CrossRef]
- Mebsout, F.; Kauffmann, J.M.; Patriarche, G.J. Redox behaviour of anti-tumor platinum (II) compounds (carboplatin) at solid electrodes. J. Pharm. Biomed. Anal. 1987, 5, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Brett AM, O.; Serrano, S.H.; Macedo, T.A.; Raimundo, D.; Helena Marques, M.; La-Scalea, M.A. Electrochemical determination of carboplatin in serum using a DNA-modified glassy carbon electrode. Electroanalysis 1996, 8, 992–995. [Google Scholar] [CrossRef]
- Phairatana, T.; Leong, C.L.; Gowers, S.A.N.; Patel, B.A.; Boutelle, M.G. Real-time detection of carboplatin using a microfluidic system. Analyst 2016, 141, 6270–6277. [Google Scholar] [CrossRef] [PubMed]
- Ciui, B.; Tertis, M.; Feurdean, C.N.; Ilea, A.; Sandulescu, R.; Wang, J.; Cristea, C. Cavitas electrochemical sensor toward detection of N-epsilon (carboxymethyl)lysine in oral cavity. Sens. Actuators B Chem. 2019, 281, 399–407. [Google Scholar] [CrossRef]
- Rus, I.; Tertis, M.; Cristea, C.; Sandulescu, R. Modern Analytical Techniques for Drug Delivery Systems Characterization. Curr. Anal. Chem. 2020, 16, 1064–1073. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Khumngern, S.; Choosang, J.; Kanatharana, P.; Thavarungkul, P.; Numnuam, A. Voltammetric sensor for an anti-cancer drug cisplatin based on bismuth nanoparticles/graphene modified glassy carbon electrode. Talanta 2024, 267, 125147. [Google Scholar] [CrossRef] [PubMed]
- Gholivand, M.B.; Ahmadi, E.; Mavaei, M. A novel voltammetric sensor based on graphene quantum dots-thionine/nano-porous glassy carbon electrode for detection of cisplatin as an anti-cancer drug. Sens. Actuators B Chem. 2019, 299, 126975. [Google Scholar] [CrossRef]
- Veal, G.J.; Errington, J.; Hayden, J.; Hobin, D.; Murphy, D.; Dommett, R.M.; Tweddle, D.A.; Jenkinson, H.; Picton, S. Carboplatin therapeutic monitoring in preterm and full-term neonates. Eur. J. Cancer 2015, 51, 2022–2030. [Google Scholar] [CrossRef] [PubMed]
- van Warmerdam, L.J.; van Tellingen, O.; ten Bokkel Huinink, W.W.; Rodenhuis, S.; Maes, R.A.; Bijnen, J.H. Monitoring carboplatin concentrations in saliva: A replacement for plasma ultrafiltrate measurements? Ther. Drug Monit. 1995, 17, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Thews, O.; Riemann, A. Tumor pH and metastasis: A malignant process beyond hypoxia. Cancer Metastasis Rev. 2019, 38, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019, 71, 1185–1198. [Google Scholar] [CrossRef] [PubMed]
- Pusta, A.; Tertis, M.; Crăciunescu, I.; Turcu, R.; Mirel, S.; Cristea, C. Recent Advances in the Development of Drug Delivery Applications of Magnetic Nanomaterials. Pharmaceutics 2023, 15, 1872. [Google Scholar] [CrossRef]
Electrode Type | Eox (V) | Iox (µA) | Ered (V) | Ired (µA) |
---|---|---|---|---|
Carbon Dropsens® electrode (d = 4 mm) | 0.256 | 164 | 0.027 | −191 |
In-house screen-printed carbon electrode (d = 4 mm) | 0.542 | 209 | −0.274 | −208 |
In-house screen-printed carbon electrode, after activation (d = 4 mm) | 0.252 | 402 | 0.040 | −380 |
Electrode | Method | Linear Range (μM) | LOD (μM) | Matrix | Ref |
---|---|---|---|---|---|
Pt electrode | LSV, direct | 50–1000 | 30 | Cell culture supernatant | [27] |
Pt electrode CPE | CV, direct | 10–300 | 8 | Aqueous solutions | [28] |
GCE-DNA | DPV, indirect | 5.7–40 | 5.7 | Human serum | [29] |
GCE-CNT-epoxy | DPV, indirect | 0–100 | 0.014 | Aqueous solutions | [30] |
SPCE | DPV, direct | 13.5–1350 | 4.5 | Loading and release buffers containing CBP Artificial saliva Artificial tears | This work |
Sample | Concentration (µg/mL) | Recovery (%) | RSD (%) |
---|---|---|---|
CBP + Cisplatin | 25 | 2.04 | 2.30 |
100 | - | - | |
200 | 1.06 | 1.60 | |
CBP + Dopamine | 25 | 95.79 | 0.75 |
100 | 101.68 | 3.51 | |
200 | 108.93 | 1.80 | |
CBP + Ascorbic acid | 25 | 104.51 | 1.43 |
100 | 87.81 | 1.65 | |
200 | 100.01 | 1.87 | |
CBP + Ca(NO3)2 | 25 | 99.56 | 1.17 |
100 | 108.17 | 2.04 | |
200 | 98.87 | 1.22 | |
CBP + Na3C6H5O7 | 25 | 113.55 | 1.24 |
100 | 118.85 | 2.48 | |
200 | 101.33 | 0.87 | |
CBP + MgCl2 | 25 | 118.49 | 0.67 |
100 | 93.83 | 3.22 | |
200 | 112.70 | 0.71 | |
CBP + Li2SO4 | 25 | 101.75 | 1.38 |
100 | 103.22 | 2.23 | |
200 | 105.11 | 1.75 | |
CBP + NH4Cl | 25 | 109.61 | 1.33 |
100 | 109.92 | 2.45 | |
200 | 108.78 | 1.72 | |
CBP + MgBr2 | 25 | 141.54 | 0.79 |
100 | 128.38 | 1.54 | |
200 | 107.89 | 1.89 |
Sample | Concentration (µg/mL) | Recovery (%) | RSD (%) |
---|---|---|---|
Deproteinized serum Dilution 1:10 | 25 | 103.72 | 1.42 |
100 | 102.24 | 6.06 | |
200 | 92.74 | 8.97 | |
Saliva Dilution 1:10 | 25 | 102.92 | 2.78 |
100 | 106.31 | 3.27 | |
200 | 99.80 | 2.56 | |
Artificial teras Dilution 1:10 | 25 | 96.94 | 3.31 |
100 | 95.44 | 1.04 | |
200 | 110.05 | 1.61 |
Source of Variation | SS | Df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Between Groups | 26.7 | 1 | 26.7 | 2.71 | 0.279 | 3.28 |
Within Groups | 383.4 | 54 | 44.51 | |||
p-value theoretical | ||||||
Total | 410.1 | 55 | 0.05 |
Media | λmax (nm) | Calibration Curve Equation | R2 |
---|---|---|---|
0.1 M PBS pH 5.0 | 231 | A = 0.007[CBP] − 0.027 | 0.999 |
0.1 M PBS pH 6.0 | 230 | A = 0.007[CBP] + 0.0016 | 0.999 |
0.1 M PBS pH 7.4 | 231 | A = 0.007[CBP] − 0.0298 | 0.999 |
Loading Solution | Quantification Method | EE (%) | LC (%) |
---|---|---|---|
2 mg/mL CBP in 0.1 M PBS pH 5 | DPV | 32.76 | 1.15 |
UV–Vis | 34.37 | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pusta, A.; Tertis, M.; Ardusadan, C.; Mirel, S.; Cristea, C. Electrochemical Sensing Device for Carboplatin Monitoring in Proof-of-Concept Drug Delivery Nanosystems. Nanomaterials 2024, 14, 793. https://doi.org/10.3390/nano14090793
Pusta A, Tertis M, Ardusadan C, Mirel S, Cristea C. Electrochemical Sensing Device for Carboplatin Monitoring in Proof-of-Concept Drug Delivery Nanosystems. Nanomaterials. 2024; 14(9):793. https://doi.org/10.3390/nano14090793
Chicago/Turabian StylePusta, Alexandra, Mihaela Tertis, Catalina Ardusadan, Simona Mirel, and Cecilia Cristea. 2024. "Electrochemical Sensing Device for Carboplatin Monitoring in Proof-of-Concept Drug Delivery Nanosystems" Nanomaterials 14, no. 9: 793. https://doi.org/10.3390/nano14090793
APA StylePusta, A., Tertis, M., Ardusadan, C., Mirel, S., & Cristea, C. (2024). Electrochemical Sensing Device for Carboplatin Monitoring in Proof-of-Concept Drug Delivery Nanosystems. Nanomaterials, 14(9), 793. https://doi.org/10.3390/nano14090793