A Poly(methacrolein-co-methacrylamide)-Based Template Anchoring Strategy for the Synthesis of Fluorescent Molecularly Imprinted Polymer Nanoparticles for Highly Selective Serotonin Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Poly(methacrolein-co-methacrylamide) (Poly(MAL-co-MAM))
2.2.1. Distillation of Methacrolein
2.2.2. Radical Co-Polymerization of Methacrolein and Methacrylamide
2.3. Pretreatment of Glass Beads for the Template Immobilization
2.4. Immobilization of Poly(Methacrolein-co-methacrylamide) on Pre-Treated Glass Beads
2.5. Immobilization of Serotonin on Poly(Methacrolein-co-methacrylamide)-Immobilized Glass Beads
2.6. Synthesis of fMIP-NPs for 5-HT (Serotonin)
2.7. Synthesis of Fluoroscent Non Imprinted Polymer Nano Particles (fNIP-NPs)
2.8. Evaluation of the Sensitivity and Selectivity of the fMIP-NPs and fNIP-NPs
2.9. Particle Size and Morphological Characterization of fMIP-NPs
3. Results and Discussion
3.1. Characterization of Poly(Methacrolein-co-methacrylamide)
3.1.1. 1H-NMR Analysis
3.1.2. Quantification of Aldehyde Groups by KMnO4 Redox Titration
3.2. Confirmation of Serotonin Immobilization Using FeCl3 Solution as an Indicator
3.3. Sensitivity of fMIP-NPs of 5-HT
Template Material | Imprinting | Detection Method | Sensitivity | Selectivity | |
---|---|---|---|---|---|
This work | Serotonin immobilized via poly(methacrolein-co-methacrylamide) anchor | Surface | Fluorescence | 37% ↑ (0–15 µM) | High selectivity (vs. L-Trp) |
MIP 1 [33] | Serotonin immobilized via blended silane anchor | Surface | Fluorescence | 5% ↑ (0–15 µM) | High selectivity (vs. L-Trp) |
MIP 2 [43] | Serotonin | Bulk | Impedance | 8.4% ↑ (0–64.5 nM) | High selectivity (vs. 5-HIAA and oxidized serotonin) |
3.4. Insensitivity of fNIP-NPs
3.5. Characterization of fMIP-NPs
3.5.1. Particle Size Analysis by Dynamic Light Scattering (DLS)
3.5.2. Morphology Analysis by Scanning Electron Microscopy (SEM)
3.6. Binding Isotherm Analysis of fMIP-NPs with Serotonin
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sultana, O.F.; Bandaru, M.; Islam, M.A.; Reddy, P.H. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res. Rev. 2024, 100, 102414. [Google Scholar] [CrossRef]
- Hansen, J.Y.; Shafiei, G.; Markello, R.D.; Smart, K.; Cox, S.M.; Nørgaard, M.; Beliveau, V.; Wu, Y.; Gallezot, J.-D.; Aumont, É. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 2022, 25, 1569–1581. [Google Scholar] [CrossRef]
- Connors, B.W. Synaptic transmission in the nervous system. In Medical Physiology E-Book: Medical Physiology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016; p. 306. [Google Scholar]
- McAllister, A.K.; Usrey, W.M.; Noctor, S.C.; Rayport, S. Cellular and molecular biology of the neuron. In The American Psychiatric Publishing Textbook of Psychiatry; American Psychiatric Association Publishing: Washington, DC, USA, 2008; p. 113. [Google Scholar]
- Naffaa, M.M. Bridging Neuroscience and Psychiatry through Brain Complexity and Neural Circuit Dysfunctions in Anxiety, Depression, and Schizophrenia. Nat. Cell Sci. 2024, 2, 257–277. [Google Scholar] [CrossRef]
- Swanson, J.L.; Chin, P.-S.; Romero, J.M.; Srivastava, S.; Ortiz-Guzman, J.; Hunt, P.J.; Arenkiel, B.R. Advancements in the quest to map, monitor, and manipulate neural circuitry. Front. Neural Circuits 2022, 16, 886302. [Google Scholar] [CrossRef] [PubMed]
- Caznok Silveira, A.C.; Antunes, A.S.L.M.; Athié, M.C.P.; da Silva, B.F.; Ribeiro dos Santos, J.V.; Canateli, C.; Fontoura, M.A.; Pinto, A.; Pimentel-Silva, L.R.; Avansini, S.H. Between neurons and networks: Investigating mesoscale brain connectivity in neurological and psychiatric disorders. Front. Neurosci. 2024, 18, 1340345. [Google Scholar] [CrossRef] [PubMed]
- Kissinger, P.T.; Hart, J.B.; Adams, R.N. Voltammetry in brain tissue—A new neurophysiological measurement. Brain Res. 1973, 55, 209–213. [Google Scholar] [CrossRef]
- Adams, R.N. In vivo electrochemical measurements in the CNS. Prog. Neurobiol. 1990, 35, 297–311. [Google Scholar] [CrossRef]
- Rodeberg, N.T.; Sandberg, S.G.; Johnson, J.A.; Phillips, P.E.; Wightman, R.M. Hitchhiker’s guide to voltammetry: Acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem. Neurosci. 2017, 8, 221–234. [Google Scholar] [CrossRef]
- Bucher, E.S.; Wightman, R.M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. 2015, 8, 239–261. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Fernandes, P.M.; Pereira, C.M.; Silva, F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016, 160, 653–679. [Google Scholar] [CrossRef]
- Gardier, A.M. Antidepressant activity: Contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT transporter/5-HT autoreceptor interactions. Front. Pharmacol. 2013, 4, 98. [Google Scholar] [CrossRef] [PubMed]
- Van Heesch, F.; Prins, J.; Konsman, J.P.; Korte-Bouws, G.A.; Westphal, K.G.; Rybka, J.; Olivier, B.; Kraneveld, A.D.; Korte, S.M. Lipopolysaccharide increases degradation of central monoamines: An in vivo microdialysis study in the nucleus accumbens and medial prefrontal cortex of mice. Eur. J. Pharmacol. 2014, 725, 55–63. [Google Scholar] [CrossRef]
- Cudjoe, E.; Bojko, B.; de Lannoy, I.; Saldivia, V.; Pawliszyn, J. Solid-phase microextraction: A complementary in vivo sampling method to microdialysis. Angew. Chem. Int. Ed. 2013, 52, 12124. [Google Scholar] [CrossRef]
- Zhang, M.; Fang, C.; Smagin, G. Derivatization for the simultaneous LC/MS quantification of multiple neurotransmitters in extracellular fluid from rat brain microdialysis. J. Pharm. Biomed. Anal. 2014, 100, 357–364. [Google Scholar] [CrossRef]
- Hou, M.-L.; Lin, C.-H.; Lin, L.-C.; Tsai, T.-H. The drug-drug effects of rhein on the pharmacokinetics and pharmacodynamics of clozapine in rat brain extracellular fluid by in vivo microdialysis. J. Pharmacol. Exp. Ther. 2015, 355, 125–134. [Google Scholar] [CrossRef]
- Koenig, M.; Thinnes, A.; Klein, J. Microdialysis and its use in behavioural studies: Focus on acetylcholine. J. Neurosci. Methods 2018, 300, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Zestos, A.G.; Luna-Munguia, H.; Stacey, W.C.; Kennedy, R.T. Use and future prospects of in vivo microdialysis for epilepsy studies. ACS Chem. Neurosci. 2018, 10, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pu, Q.; Yu, F.; Ding, X.; Sun, Y.; Guo, Q.; Shi, J.; Zhang, J.; Abliz, Z. Comprehensive quantitative method for neurotransmitters to study the activity of a sedative-hypnotic candidate using microdialysis and LC× LC-MS/MS. Talanta 2022, 245, 123418. [Google Scholar] [CrossRef]
- Wang, H.; Jing, M.; Li, Y. Lighting up the brain: Genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr. Opin. Neurobiol. 2018, 50, 171–178. [Google Scholar] [CrossRef]
- Patriarchi, T.; Cho, J.R.; Merten, K.; Howe, M.W.; Marley, A.; Xiong, W.-H.; Folk, R.W.; Broussard, G.J.; Liang, R.; Jang, M.J. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 2018, 360, eaat4422. [Google Scholar] [CrossRef]
- Corre, J.; van Zessen, R.; Loureiro, M.; Patriarchi, T.; Tian, L.; Pascoli, V.; Lüscher, C. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife 2018, 7, e39945. [Google Scholar] [CrossRef]
- Augustine, V.; Ebisu, H.; Zhao, Y.; Lee, S.; Ho, B.; Mizuno, G.O.; Tian, L.; Oka, Y. Temporally and spatially distinct thirst satiation signals. Neuron 2019, 103, 242–249.e4. [Google Scholar] [CrossRef] [PubMed]
- Mohebi, A.; Pettibone, J.R.; Hamid, A.A.; Wong, J.-M.T.; Vinson, L.T.; Patriarchi, T.; Tian, L.; Kennedy, R.T.; Berke, J.D. Dissociable dopamine dynamics for learning and motivation. Nature 2019, 570, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Jing, M.; Li, Y.; Zeng, J.; Huang, P.; Skirzewski, M.; Kljakic, O.; Peng, W.; Qian, T.; Tan, K.; Zou, J. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 2020, 17, 1139–1146. [Google Scholar] [CrossRef]
- Patriarchi, T.; Mohebi, A.; Sun, J.; Marley, A.; Liang, R.; Dong, C.; Puhger, K.; Mizuno, G.O.; Davis, C.M.; Wiltgen, B. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 2020, 17, 1147–1155. [Google Scholar] [CrossRef]
- Sun, F.; Zhou, J.; Dai, B.; Qian, T.; Zeng, J.; Li, X.; Zhuo, Y.; Zhang, Y.; Wang, Y.; Qian, C. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 2020, 17, 1156–1166. [Google Scholar] [CrossRef]
- Labouesse, M.A.; Cola, R.B.; Patriarchi, T. GPCR-based dopamine sensors—A detailed guide to inform sensor choice for in vivo imaging. Int. J. Mol. Sci. 2020, 21, 8048. [Google Scholar] [CrossRef] [PubMed]
- Ndunda, E.N. Molecularly imprinted polymers—A closer look at the control polymer used in determining the imprinting effect: A mini review. J. Mol. Recognit. 2020, 33, e2855. [Google Scholar] [CrossRef]
- Poma, A.; Guerreiro, A.; Whitcombe, M.J.; Piletska, E.V.; Turner, A.P.; Piletsky, S.A. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template–“plastic antibodies”. Adv. Funct. Mater. 2013, 23, 2821–2827. [Google Scholar] [CrossRef]
- Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 2016, 11, 443–455. [Google Scholar] [CrossRef]
- Yoshimi, Y.; Katsumata, Y.; Osawa, N.; Ogishita, N.; Kadoya, R. Synthesis of fluorescent Molecularly Imprinted Polymer Nanoparticles Sensing Small Neurotransmitters with High Selectivity Using Immobilized Templates with Regulated Surface Density. Nanomaterials 2023, 13, 212. [Google Scholar] [CrossRef]
- Liu, Q.-H.; Liu, J.; Guo, J.-C.; Yan, X.-L.; Wang, D.-H.; Chen, L.; Yan, F.-Y.; Chen, L.-G. Preparation of polystyrene fluorescent microspheres based on some fluorescent labels. J. Mater. Chem. 2009, 19, 2018–2025. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.; Tang, J.; Liu, Y.; Huang, P.; Zhang, Y.F. The synthesis and characterization of polyacrolein through radical polymerization. Macromol. React. Eng. 2021, 15, 2000046. [Google Scholar] [CrossRef]
- Forshed, J.; Erlandsson, B.; Jacobsson, S.P. Quantification of aldehyde impurities in poloxamer by 1H NMR spectrometry. Anal. Chim. Acta 2005, 552, 160–165. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Roder, H.; Paterson, Y. Rapid amide proton exchange rates in peptides and proteins measured by solvent quenching and two-dimensional NMR. Protein Sci. 1995, 4, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Abraham, R.J.; Byrne, J.J.; Griffiths, L.; Perez, M. 1H chemical shifts in NMR: Part 23, the effect of dimethyl sulphoxide versus chloroform solvent on 1H chemical shifts. Magn. Reson. Chem. 2006, 44, 491–509. [Google Scholar] [CrossRef]
- Rennella, E.; Solyom, Z.; Brutscher, B. Measuring hydrogen exchange in proteins by selective water saturation in 1 H–15 N SOFAST/BEST-type experiments: Advantages and limitations. J. Biomol. NMR 2014, 60, 99–107. [Google Scholar] [CrossRef]
- Stahl, J.; König, B. A survey of the iron ligand-to-metal charge transfer chemistry in water. Green Chem. 2024, 26, 3058–3071. [Google Scholar] [CrossRef]
- Juliá, F. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: An emerging tool for sustainable organic synthesis. ChemCatChem 2022, 14, e202200916. [Google Scholar] [CrossRef]
- Hawkins, R.D.; Kandel, E.R.; Bailey, C.H. Molecular mechanisms of memory storage in Aplysia. Biol. Bull. 2006, 210, 174–191. [Google Scholar] [CrossRef]
- Peeters, M.; Troost, F.; van Grinsven, B.; Horemans, F.; Alenus, J.; Murib, M.S.; Keszthelyi, D.; Ethirajan, A.; Thoelen, R.; Cleij, T.J. MIP-based biomimetic sensor for the electronic detection of serotonin in human blood plasma. Sens. Actuators B Chem. 2012, 171, 602–610. [Google Scholar] [CrossRef]
- Frenzel, A.; Hust, M.; Schirrmann, T. Expression of recombinant antibodies. Front. Immunol. 2013, 4, 217. [Google Scholar] [CrossRef] [PubMed]
- Thevendran, R.; Navien, T.N.; Meng, X.; Wen, K.; Lin, Q.; Sarah, S.; Tang, T.H.; Citartan, M. Mathematical approaches in estimating aptamer-target binding affinity. Anal. Biochem. 2020, 600, 113742. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.; Chang, R.; Zhu, Q.-J. Synthesis and characterization of a molecularly imprinted polymer of spermidine and the exploration of its molecular recognition properties. Polymers 2018, 10, 1389. [Google Scholar] [CrossRef]
- Medina Rangel, P.X.; Laclef, S.; Xu, J.; Panagiotopoulou, M.; Kovensky, J.; Tse Sum Bui, B.; Haupt, K. Solid-phase synthesis of molecularly imprinted polymer nanolabels: Affinity tools for cellular bioimaging of glycans. Sci. Rep. 2019, 9, 3923. [Google Scholar] [CrossRef]
Molar Ratio of Methacrolein to Methacrylamide | Molar Ratio of Initiator to Total Comonomer | Total Comonomer Concentration [M] | |
---|---|---|---|
Condition 1 | 1:3 | 1:100 | 1.23 |
Condition 2 | 1:1 | 1:100 | 4.30 |
Condition 3 | 5:1 | 1:150 | 4.59 |
Molar Ratio of Methacrolein to Methacrylamide in Pre-Polymer Solution | Moles of -(CH2C(CH3)-CHO)- in 0.5 g of Synthesized Copolymer [µmol] | Molar Ratio of -(CH2C(CH3)-CHO)- to -(CH2C(CH3)-NH2)- in the Synthesized Copolymer | |
---|---|---|---|
Condition 1 | 1:3 | 4.5 | 7.7 × 10−3 |
Condition 2 | 1:1 | 9.3 | 1.5 × 10−2 |
Condition 3 | 5:1 | 38.8 | 7.1 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biyani, M.; Matsumoto, M.; Yoshimi, Y. A Poly(methacrolein-co-methacrylamide)-Based Template Anchoring Strategy for the Synthesis of Fluorescent Molecularly Imprinted Polymer Nanoparticles for Highly Selective Serotonin Sensing. Nanomaterials 2025, 15, 977. https://doi.org/10.3390/nano15130977
Biyani M, Matsumoto M, Yoshimi Y. A Poly(methacrolein-co-methacrylamide)-Based Template Anchoring Strategy for the Synthesis of Fluorescent Molecularly Imprinted Polymer Nanoparticles for Highly Selective Serotonin Sensing. Nanomaterials. 2025; 15(13):977. https://doi.org/10.3390/nano15130977
Chicago/Turabian StyleBiyani, Madhav, Mizuki Matsumoto, and Yasuo Yoshimi. 2025. "A Poly(methacrolein-co-methacrylamide)-Based Template Anchoring Strategy for the Synthesis of Fluorescent Molecularly Imprinted Polymer Nanoparticles for Highly Selective Serotonin Sensing" Nanomaterials 15, no. 13: 977. https://doi.org/10.3390/nano15130977
APA StyleBiyani, M., Matsumoto, M., & Yoshimi, Y. (2025). A Poly(methacrolein-co-methacrylamide)-Based Template Anchoring Strategy for the Synthesis of Fluorescent Molecularly Imprinted Polymer Nanoparticles for Highly Selective Serotonin Sensing. Nanomaterials, 15(13), 977. https://doi.org/10.3390/nano15130977