High-Speed and Hysteresis-Free Near-Infrared Optical Hydrogen Sensor Based on Ti/Pd Bilayer Thin Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thin-Film Deposition
2.3. Teflon AF and PMMA Deposition
2.4. Structural and Morphological Characterization
2.5. Optical Sensing and Measurement Setup
2.6. Finite-Difference Time-Domain Calculations
3. Results and Discussion
3.1. Film Morphology and Structure
3.2. Effect of Ti Underlayer in Pd/Ti Bilayer Films
3.2.1. Enhanced NIR Optical Response
3.2.2. Reduced Hysteresis in the Optical Sorption Isotherm
3.2.3. Faster Response and Enhanced Hydrogen Kinetics
3.3. Optimization of Pd Thickness for High-Performance Sensing
Sensing Platform | (@ 40 mbar) | (@ 1 mbar) | LOD (ppm) | Hysteresis-Free? | Ref. |
---|---|---|---|---|---|
0.15 | 0.85 | 2.5 | Yes | [13] | |
PdAu nano-particles @ PTFE/PMMA (100 × 25 ) | 0.3 | 1 | 1000 (estimated) | Yes | [30] |
Ti/Pd/TAF film | 0.35 | Yes | This work | ||
Pd nano-disk array | 10 | - | 50 | n.a. | [45] |
Pd bilayer lattices | 55 | - | n.a. | [44] | |
PdAuCu nano-particles | 0.4 | - | 5 | Yes | [21] |
PdAu nanostructures | 40 | - | - | yes | [54] |
Pd strip | - | 20 | 10 | n.a. | [55] |
PdY film | 6 | - | 1000 | n.a. | [56] |
Pd/SiO2/Au | 3 | - | 5000 | n.a. | [57] |
Pd/Au film | 4.5 | - | - | n.a. | [58] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abridged Disclaimer
Abbreviations
References
- Hirscher, M.; Yartys, V.A.; Baricco, M.; Bellosta von Colbe, J.; Blanchard, D.; Bowman, R.C.; Broom, D.P.; Buckley, C.E.; Chang, F.; Chen, P.; et al. Materials for hydrogen-based energy storage—Past, recent progress and future outlook. J. Alloys Compd. 2020, 827, 153548. [Google Scholar] [CrossRef]
- Dutta, S. A review on production, storage of hydrogen and its utilization as an energy resource. J. Ind. Eng. Chem. 2014, 20, 1148–1156. [Google Scholar] [CrossRef]
- Buttner, W.J.; Post, M.B.; Burgess, R.; Rivkin, C. An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 2011, 36, 2462–2470. [Google Scholar] [CrossRef]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Boon-Brett, L.; Bousek, J.; Black, G.; Moretto, P.; Castello, P.; Hübert, T.; Banach, U. Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. Int. J. Hydrogen Energy 2010, 35, 373–384. [Google Scholar] [CrossRef]
- Yan, S.; Cao, Y.; Su, Y.; Huang, B.; Chen, C.; Yu, X.; Xu, A.; Wu, T. Hydrogen Sensors Based on Pd-Based Materials: A Review. Sensors 2025, 25, 3402. [Google Scholar] [CrossRef]
- Yang, R.; Yuan, Z.; Jiang, C.; Zhang, X.; Qiao, Z.; Zhang, J.; Liang, J.; Wang, S.; Duan, Z.; Wu, Y.; et al. Ultrafast Hydrogen Detection System Using Vertical Thermal Conduction Structure and Neural Network Prediction Algorithm Based on Sensor Response Process. ACS Sens. 2025, 10, 2181–2190. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.A.; Magar, A.; Pham, M.; Luong, H.; Larsen, G.; Zhao, Y.; Nguyen, T. Fullerene-Decorated PdCo Nano-Resistor Network Hydrogen Sensors: Sub-Second Response and Part-per-Trillion Detection at Room Temperature. Res. Sq. 2024. preprint. [Google Scholar] [CrossRef]
- Pham, M.T.; Luong, H.M.; Pham, H.T.; Guin, T.; Zhao, Y.; Larsen, G.K.; Nguyen, T.D. Pd80Co20 Nanohole Arrays Coated with Poly(methyl methacrylate) for High-Speed Hydrogen Sensing with a Part-per-Billion Detection Limit. ACS Appl. Nano Mater. 2021, 4, 3664–3674. [Google Scholar] [CrossRef]
- Wadell, C.; Syrenova, S.; Langhammer, C. Plasmonic Hydrogen Sensing with Nanostructured Metal Hydrides. ACS Nano 2014, 8, 11925–11940. [Google Scholar] [CrossRef] [PubMed]
- Berube, V.; Radtke, G.; Dresselhaus, M.; Chen, G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int. J. Energy Res. 2007, 31, 637–663. [Google Scholar] [CrossRef]
- Luong, H.M.; Pham, M.T.; Guin, T.; Madhogaria, R.P.; Phan, M.-H.; Larsen, G.K.; Nguyen, T.D. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nat. Commun. 2021, 12, 2414. [Google Scholar] [CrossRef] [PubMed]
- Avila, J.I.; Matelon, R.J.; Trabol, R.; Favre, M.; Lederman, D.; Volkmann, U.G.; Cabrera, A.L. Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy. J. Appl. Phys. 2010, 107, 023504. [Google Scholar] [CrossRef]
- Nishijima, Y.; Shimizu, S.; Kurihara, K.; Hashimoto, Y.; Takahashi, H.; Balčytis, A.; Seniutinas, G.; Okazaki, S.; Juodkazytė, J.; Iwasa, T.; et al. Optical readout of hydrogen storage in films of Au and Pd. Opt. Express 2017, 25, 24081–24092. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Sevryugina, Y.; Carpenter, M.A.; Welch, D.; Xia, H. All-Optical Hydrogen-Sensing Materials Based on Tailored Palladium Alloy Thin Films. Anal. Chem. 2004, 76, 6321–6326. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.D.; Chen, A. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282–289. [Google Scholar] [CrossRef]
- Schwarz, R.B.; Khachaturyan, A.G. Thermodynamics of open two-phase systems with coherent interfaces: Application to metal–hydrogen systems. Acta Mater. 2006, 54, 313–323. [Google Scholar] [CrossRef]
- Verma, N.; Bottger, A.J. Stress Development and Adhesion in Hydrogenated Nano-Columnar Pd and Pd/Ti Ultra-Thin Films. Adv. Mater. Res. 2014, 996, 872–877. [Google Scholar] [CrossRef]
- Wadell, C.; Nugroho, F.A.A.; Lidström, E.; Iandolo, B.; Wagner, J.B.; Langhammer, C. Hysteresis-Free Nanoplasmonic Pd–Au Alloy Hydrogen Sensors. Nano Lett. 2015, 15, 3563–3570. [Google Scholar] [CrossRef] [PubMed]
- Darmadi, I.; Nugroho, F.A.A.; Kadkhodazadeh, S.; Wagner, J.B.; Langhammer, C. Rationally Designed PdAuCu Ternary Alloy Nanoparticles for Intrinsically Deactivation-Resistant Ultrafast Plasmonic Hydrogen Sensing. ACS Sens. 2019, 4, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Thundat, T.; Swihart, M.T. Ultrathin Palladium Nanowires for Fast and Hysteresis-Free H2 Sensing. ACS Appl. Nano Mater. 2022, 5, 5895–5905. [Google Scholar] [CrossRef]
- Boelsma, C.; Bannenberg, L.J.; van Setten, M.J.; Steinke, N.J.; van Well, A.A.; Dam, B. Hafnium—An optical hydrogen sensor spanning six orders in pressure. Nat. Commun. 2017, 8, 15718. [Google Scholar] [CrossRef] [PubMed]
- Palm, K.J.; Murray, J.B.; Narayan, T.C.; Munday, J.N. Dynamic Optical Properties of Metal Hydrides. ACS Photonics 2018, 5, 4677–4686. [Google Scholar] [CrossRef]
- Verma, N.; Krishnamurthy, G.; Tichelaar, F.D.; Böttger, A.J. Controlling morphology and texture of sputter-deposited Pd films by tuning the surface topography of the (Ti) adhesive layer. Surf. Coat. Technol. 2019, 359, 24–34. [Google Scholar] [CrossRef]
- Jenkins, M.; Hughes, R.; Patel, S. Stabilizing the Response of Pd/Ni Alloy Films to Hydrogen with Ti Adhesion Layers; Environmental and Industrial Sensing; SPIE: Bellingham, WA, USA, 2001; Volume 4205. [Google Scholar]
- S. S. dos Santos, P.; M. M. M. de Almeida, J.; Pastoriza-Santos, I.; C. C. Coelho, L. Advances in Plasmonic Sensing at the NIR—A Review. Sensors 2021, 21, 2111. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef]
- Hänsel, A.; Heck, M.J.R. Feasibility of Telecom-Wavelength Photonic Integrated Circuits for Gas Sensors. Sensors 2018, 18, 2870. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, F.A.A.; Darmadi, I.; Cusinato, L.; Susarrey-Arce, A.; Schreuders, H.; Bannenberg, L.J.; da Silva Fanta, A.B.; Kadkhodazadeh, S.; Wagner, J.B.; Antosiewicz, T.J.; et al. Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater. 2019, 18, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Luong, H.M.; Ngo, T.A.; Pham, M.T.; Zhao, Y.; Larsen, G.K.; Nguyen, T.-Q.; Nguyen, T.D. Ultra-fast and sensitive magneto-optical hydrogen sensors using a magnetic nano-cap array. Nano Energy 2023, 109, 108332. [Google Scholar] [CrossRef]
- Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B. Optical Hydrogen Sensors Based on Metal-Hydrides; SPIE Defense, Security, and Sensing; SPIE: Bellingham, WA, USA, 2012; Volume 8368. [Google Scholar]
- Luong, H.M.; Pham, M.T.; Larsen, G.K.; Nguyen, T.D. Plasmonic Sensing of Hydrogen in Pd Nano-Hole Arrays; SPIE Nanoscience + Engineering; SPIE: Bellingham, WA, USA, 2019; Volume 11082. [Google Scholar]
- Renaud, G.; Lazzari, R.; Leroy, F. Probing surface and interface morphology with Grazing Incidence Small Angle X-Ray Scattering. Surf. Sci. Rep. 2009, 64, 255–380. [Google Scholar] [CrossRef]
- Colin, J.; Jamnig, A.; Furgeaud, C.; Michel, A.; Pliatsikas, N.; Sarakinos, K.; Abadias, G. In Situ and Real-Time Nanoscale Monitoring of Ultra-Thin Metal Film Growth Using Optical and Electrical Diagnostic Tools. Nanomaterials 2020, 10, 2225. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, G.; Bearzotti, A.; Caliendo, C.; D’Amico, A. Hydrogen sensitivity of Pd/SiO2/Si structure: A correlation with the hydrogen-induced modifications on optical and transport properties of α-phase Pd films. Sens. Actuators 1989, 16, 43–54. [Google Scholar] [CrossRef]
- Tobiška, P.; Hugon, O.; Trouillet, A.; Gagnaire, H. An integrated optic hydrogen sensor based on SPR on palladium. Sens. Actuators B Chem. 2001, 74, 168–172. [Google Scholar] [CrossRef]
- Mandelis, A.; Garcia, J.A. Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance: Dependence on H2 concentration and device physics. Sens. Actuators B Chem. 1998, 49, 258–267. [Google Scholar] [CrossRef]
- Vargas, W.E.; Rojas, I.; Azofeifa, D.E.; Clark, N. Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements. Thin Solid Film. 2006, 496, 189–196. [Google Scholar] [CrossRef]
- Rong, Y.; Hu, Y.; Ravishankar, S.; Liu, H.; Hou, X.; Sheng, Y.; Mei, A.; Wang, Q.; Li, D.; Xu, M.; et al. Tunable hysteresis effect for perovskite solar cells. Energy Environ. Sci. 2017, 10, 2383–2391. [Google Scholar] [CrossRef]
- Kim, K.R.; Noh, J.-S.; Lee, J.M.; Kim, Y.J.; Lee, W. Suppression of phase transitions in Pd thin films by insertion of a Ti buffer layer. J. Mater. Sci. 2011, 46, 1597–1601. [Google Scholar] [CrossRef]
- Zeng, X.Q.; Wang, Y.L.; Xiao, Z.L.; Latimer, M.L.; Xu, T.; Kwok, W.K. Hydrogen responses of ultrathin Pd films and nanowire networks with a Ti buffer layer. J. Mater. Sci. 2012, 47, 6647–6651. [Google Scholar] [CrossRef]
- Yang, F.; Taggart, D.K.; Penner, R.M. Fast, Sensitive Hydrogen Gas Detection Using Single Palladium Nanowires That Resist Fracture. Nano Lett. 2009, 9, 2177. [Google Scholar] [CrossRef] [PubMed]
- Luong, H.M.; Pham, M.T.; Madhogaria, R.P.; Phan, M.-H.; Larsen, G.K.; Nguyen, T.D. Bilayer plasmonic nano-lattices for tunable hydrogen sensing platform. Nano Energy 2020, 71, 104558. [Google Scholar] [CrossRef]
- Herkert, E.; Sterl, F.; Strohfeldt, N.; Walter, R.; Giessen, H. Low-Cost Hydrogen Sensor in the ppm Range with Purely Optical Readout. ACS Sens. 2020, 5, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Langhammer, C.; Zhdanov, V.P.; Zorić, I.; Kasemo, B. Size-Dependent Kinetics of Hydriding and Dehydriding of Pd Nanoparticles. Phys. Rev. Lett. 2010, 104, 135502. [Google Scholar] [CrossRef] [PubMed]
- Caravella, A.; Scura, F.; Barbieri, G.; Drioli, E. Sieverts Law Empirical Exponent for Pd-Based Membranes: Critical Analysis in Pure H2 Permeation. J. Phys. Chem. B 2010, 114, 6033–6047. [Google Scholar] [CrossRef] [PubMed]
- Darmadi, I.; Nugroho, F.A.A.; Langhammer, C. High-Performance Nanostructured Palladium-Based Hydrogen Sensors—Current Limitations and Strategies for Their Mitigation. ACS Sens. 2020, 5, 3306–3327. [Google Scholar] [CrossRef] [PubMed]
- Nsubuga, L.; de Oliveira Hansen, R. Accelerated Life Tests for Time-Dependent Response Characterization of Functionalized Piezoelectric Microcantilever-Based Gas Sensors. Electronics 2024, 13, 4525. [Google Scholar] [CrossRef]
- O’Brien, M.; Baxendale, I.R.; Ley, S.V. Flow Ozonolysis Using a Semipermeable Teflon AF-2400 Membrane To Effect Gas−Liquid Contact. Org. Lett. 2010, 12, 1596–1598. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Lee, S.; Seo, J.; Pyo, S.; Kim, J.; Lee, T. A Highly Sensitive Hydrogen Sensor with Gas Selectivity Using a PMMA Membrane-Coated Pd Nanoparticle/Single-Layer Graphene Hybrid. ACS Appl. Mater. Interfaces 2015, 7, 3554–3561. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, F.A.A.; Bai, P.; Darmadi, I.; Castellanos, G.W.; Fritzsche, J.; Langhammer, C.; Gómez Rivas, J.; Baldi, A. Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection. Nat. Commun. 2022, 13, 5737. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.-S.; Kim, K.-H.; Lee, J.-S.; Kim, S.-H.; Yoo, J.-Y.; Choi, K.-W.; Kim, B.-J.; Kwon, D.-S.; Yoo, I.; Yang, J.-S.; et al. Ultrafast (~0.6 s), Robust, and Highly Linear Hydrogen Detection up to 10% Using Fully Suspended Pure Pd Nanowire. ACS Nano 2023, 17, 23649–23658. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, F.A.A.; Eklund, R.; Nilsson, S.; Langhammer, C. A fiber-optic nanoplasmonic hydrogen sensor via pattern-transfer of nanofabricated PdAu alloy nanostructures. Nanoscale 2018, 10, 20533–20539. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Villa, N.S.; Luo, Z.; An, S.; Shen, Q.; Tao, P.; Song, C.; Wu, J.; Deng, T.; Shang, W. Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing. RSC Adv. 2018, 8, 32395–32400. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Chen, Y.; Zhang, G.; Liu, Y.; Huang, P.; Zhao, H.; Yang, M.; Dai, J.; Li, Z. Optical fiber hydrogen sensor based on an annealing-stimulated Pd–Y thin film. Sens. Actuators B Chem. 2015, 216, 11–16. [Google Scholar] [CrossRef]
- Perrotton, C.; Westerwaal, R.J.; Javahiraly, N.; Slaman, M.; Schreuders, H.; Dam, B.; Meyrueis, P. A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance. Opt. Express 2013, 21, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Monzón-Hernández, D.; Luna-Moreno, D.; Martínez-Escobar, D. Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers. Sens. Actuators B Chem. 2009, 136, 562–566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa Magar, A.; Ngo, T.A.; Luong, H.M.; Phan, T.T.T.; Trinh, M.T.; Zhao, Y.; Nguyen, T.D. High-Speed and Hysteresis-Free Near-Infrared Optical Hydrogen Sensor Based on Ti/Pd Bilayer Thin Films. Nanomaterials 2025, 15, 1105. https://doi.org/10.3390/nano15141105
Thapa Magar A, Ngo TA, Luong HM, Phan TTT, Trinh MT, Zhao Y, Nguyen TD. High-Speed and Hysteresis-Free Near-Infrared Optical Hydrogen Sensor Based on Ti/Pd Bilayer Thin Films. Nanomaterials. 2025; 15(14):1105. https://doi.org/10.3390/nano15141105
Chicago/Turabian StyleThapa Magar, Ashwin, Tu Anh Ngo, Hoang Mai Luong, Thi Thu Trinh Phan, Minh Tuan Trinh, Yiping Zhao, and Tho Duc Nguyen. 2025. "High-Speed and Hysteresis-Free Near-Infrared Optical Hydrogen Sensor Based on Ti/Pd Bilayer Thin Films" Nanomaterials 15, no. 14: 1105. https://doi.org/10.3390/nano15141105
APA StyleThapa Magar, A., Ngo, T. A., Luong, H. M., Phan, T. T. T., Trinh, M. T., Zhao, Y., & Nguyen, T. D. (2025). High-Speed and Hysteresis-Free Near-Infrared Optical Hydrogen Sensor Based on Ti/Pd Bilayer Thin Films. Nanomaterials, 15(14), 1105. https://doi.org/10.3390/nano15141105