Recent Advances in Non-Noble Metal Electrocatalysts for Hydrogen Evolution Reaction in Water Splitting
Abstract
1. Introduction
2. Fundamentals of Hydrogen Evolution Reaction Through Water Electrolysis
- Volmer reaction: The protons of H3O+ in the electrolyte are captured by the electrons on the catalyst surface, forming adsorbed hydrogen (m − H) on the catalyst surface.
- 2.
- Heyrovsky reaction: This adsorbed hydrogen atom couples to a proton and an electron to form a hydrogen molecule.
- 3.
- Tafel reaction: Adjacent adsorbed hydrogen atoms couple to form a hydrogen molecule.
- Volmer reaction: Water molecule provides protons that combine with electrons to form adsorbed hydrogen, replacing the role of H3O+ in acidic solutions.
- 2.
- Heyrovsky reaction: The adsorbed hydrogen atom attracts both a water molecule and an electron to produce a hydrogen molecule.
- 3.
- Tafel reaction: Like in acidic conditions, two adjacent adsorbed hydrogen atoms combine to form a hydrogen molecule.
3. HER Electrocatalysts Performance Evaluation Parameters
3.1. Overpotential
3.2. Tafel Slope
3.3. Faradaic Efficiency
3.4. Electrochemical Active Surface Area (ECSA)
3.5. Stability
3.6. Catalyst Loading and Electrolyte pH
4. Non-Noble Metal HER Electrocatalysts
4.1. Transition Metal Compound-Based Catalysts
4.1.1. Transition Metal Carbides/Nitrides
4.1.2. Transition Metal Phosphides (TMPs)
4.1.3. Transition Metal Sulfides
4.1.4. Transition Metal Oxides (TMOs)
4.2. MOFs and Their Derivatives
4.3. Alloys and Intermetallic Compounds (IMCs)
4.4. High-Entropy Alloys and High-Entropy Oxides
4.5. Composite and Heterostructured Catalysts
4.6. Carbon-Based Electrocatalysts
5. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Feng, C.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochem. Energy Rev. 2021, 4, 473–507. [Google Scholar] [CrossRef]
- Shamloofard, M.; Shahrokhian, S. Morphology Modulation and Phase Transformation of Manganese-Cobalt Carbonate Hydroxide Caused by Fluoride Doping and Its Effect on Boosting the Overall Water Electrolysis. Inorg. Chem. 2023, 62, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhai, Z.; Yin, S.; Wang, S. General Formation of Interfacial Assembled Hierarchical Micro-Nano Arrays for Biomass Upgrading-Coupled Hydrogen Production. Adv. Funct. Mater. 2024, 34, 2308198. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S. Recent Progress in Electrode Fabrication for Electrocatalytic Hydrogen Evolution Reaction: A Mini Review. Chem. Eng. J. 2020, 393, 124726. [Google Scholar] [CrossRef]
- Bhunia, K.; Chandra, M.; Sharma, S.K.; Pradhan, D.; Kim, S.J. A Critical Review on Transition Metal Phosphide Based Catalyst for Electrochemical Hydrogen Evolution Reaction: Gibbs Free Energy, Composition, Stability, and True Identity of Active Site. Coord. Chem. Rev. 2023, 478, 214956. [Google Scholar] [CrossRef]
- Wu, T.; Sun, M.-Z.; Huang, B.-L. Non-Noble Metal-Based Bifunctional Electrocatalysts for Hydrogen Production. Rare Metals 2022, 41, 2169–2183. [Google Scholar] [CrossRef]
- Wang, C.; Li, G.; Yang, G.; Che, X.; Wang, Y.; Zhao, L.; Wang, X.; Pang, H.; Yang, D. Trimetallic Sulfide Nanoflowers Arrays on Ni Foams as Self-Supported Electrodes for Hydrogen Evolution Reactions. Inorg. Chem. Commun. 2023, 158, 111526. [Google Scholar] [CrossRef]
- Jia, S.; Cheng, Y.; Huang, Q.; Li, Q.; Zhang, Q.; Wang, Z.; Zhang, Y.; Zhang, N.; Mu, Y. One-Step Synthesis of Co2P/N-P Co-Doped Porous Carbon Composites Derived from Soybean Derivatives as Acidic and Alkaline HER Electrocatalysts. Int. J. Hydrog. Energy 2022, 47, 24796–24806. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Balamurugan, J.; Vinothkannan, M.; Kim, A.R.; Sengodan, S.; Yoo, D.J. Nitrogen-Doped Graphene Encapsulated FeCoMoS Nanoparticles as Advanced Trifunctional Catalyst for Water Splitting Devices and Zinc-Air Batteries. Appl. Catal. B-Environ. 2020, 279, 119381. [Google Scholar] [CrossRef]
- Sriram, S.; Vishnu, B.; Jayabharathi, J. Solution Combusted Ultrathin Co3O4/CoO Heterophase Electrocatalyst for Solar-Energy Driven Bifunctional Water Electrolysis. Chemistryselect 2023, 8, e202301402. [Google Scholar] [CrossRef]
- Khan, M.A.; Zhao, H.; Zou, W.; Chen, Z.; Cao, W.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J. Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochem. Energy Rev. 2018, 1, 483–530. [Google Scholar] [CrossRef]
- Wang, J.; Yue, X.; Yang, Y.; Sirisomboonchai, S.; Wang, P.; Ma, X.; Abudula, A.; Guan, G. Earth-Abundant Transition-Metal-Based Bifunctional Catalysts for Overall Electrochemical Water Splitting: A Review. J. Alloys. Compd. 2020, 819, 153346. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.-L.; Zhang, H.-K.; Cao, Z.-Q.; Wu, H.-Y.; Jia, B.-R.; Yang, J.-J.; Qu, X.-H.; Qin, M.-L. Facile Synthesis of Transition Metal Carbide Nanoparticles Embedded in Mesoporous Carbon Nanosheets for Hydrogen Evolution Reaction. Rare Metals 2022, 41, 2237–2242. [Google Scholar] [CrossRef]
- Pratama, D.S.A.; Haryanto, A.; Lee, C.W. Heterostructured Mixed Metal Oxide Electrocatalyst for the Hydrogen Evolution Reaction. Front. Chem. 2023, 11, 1141361. [Google Scholar] [CrossRef] [PubMed]
- Shahroudi, A.; Esfandiari, M.; Habibzadeh, S. Nickel Sulfide and Phosphide Electrocatalysts for Hydrogen Evolution Reaction: Challenges and Future Perspectives. RSC Adv. 2022, 12, 29440–29468. [Google Scholar] [CrossRef] [PubMed]
- Zabielaite, A.; Balciunaite, A.; Upskuviene, D.; Simkunaite, D.; Levinas, R.; Niaura, G.; Vaiciuniene, J.; Jasulaitiene, V.; Tamasauskaite-Tamasiunaite, L.; Norkus, E. Investigation of Hydrogen and Oxygen Evolution on Cobalt-Nanoparticles-Supported Graphitic Carbon Nitride. Materials 2023, 16, 5923. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, B.A.; Yaseen, W.; Xie, M.; Zayyan, R.S.; Muhammad, A.I.; Nankya, R.; Xie, J.; Xu, Y. Recent Advances in Understanding and Design of Efficient Hydrogen Evolution Electrocatalysts for Water Splitting: A Comprehensive Review. Adv. Colloid Interface Sci. 2023, 311, 102811. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, L.; Gong, J. Recent Progress Made in the Mechanism Comprehension and Design of Electrocatalysts for Alkaline Water Splitting. Energy Environ. Sci. 2019, 12, 2620–2645. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, Y.; Liu, G.-G.; Wang, C.-T.; Wang, J. Recent Advances in Nanostructured Electrocatalysts for Hydrogen Evolution Reaction. Rare Metals 2021, 40, 3375–3405. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing Single-Atom Catalysts toward Improved Alkaline Hydrogen Evolution Reaction. Mater. Rep.-Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Zai, S.F.; Wu, Y.H.; Zhou, Y.T.; Li, Z.T.H.; Bin Guo, C. Hierarchical NiOx Nanotube Arrays/CoP Nanosheets Heterostructure Enables Robust Alkaline Hydrogen Evolution Reaction. J. Colloid Interface Sci. 2023, 643, 350–359. [Google Scholar] [CrossRef]
- Chen, Z.; Qing, H.; Zhou, K.; Sun, D.; Wu, R. Metal-Organic Framework-Derived Nanocomposites for Electrocatalytic Hydrogen Evolution Reaction. Prog. Mater. Sci. 2020, 108, 100618. [Google Scholar] [CrossRef]
- Gao, X.; Dai, Q.; Lu, X.; Kawi, S. Carbon-Supported Non-Noble Metal Single-Atom Catalysts for Electro-Catalytic Hydrogen Evolution Reaction. Int. J. Hydrogen. Energy 2023, 48, 17106–17136. [Google Scholar] [CrossRef]
- Wu, Z.-P.; Lu, X.F.; Zang, S.-Q.; Lou, X.W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction. Adv. Funct. Mater. 2020, 30, 1910274. [Google Scholar] [CrossRef]
- Ali, A.; Long, F.; Shen, P.K. Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts. Electrochem. Energy Rev. 2022, 5, 1. [Google Scholar] [CrossRef]
- Zhao, J.; Urrego-Ortiz, R.; Liao, N.; Calle-Vallejo, F.; Luo, J. Rationally Designed Ru Catalysts Supported on TiN for Highly Efficient and Stable Hydrogen Evolution in Alkaline Conditions. Nat. Commun. 2024, 15, 6391. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Z.; Liu, M.; Wang, E.; Wang, B.; Xu, L.; Jiang, K.; Fan, S.; Sun, Y.; Li, J.; et al. Ultrafast Self-Heating Synthesis of Robust Heterogeneous Nanocarbides for High Current Density Hydrogen Evolution Reaction. Nat. Commun. 2022, 13, 3338. [Google Scholar] [CrossRef] [PubMed]
- Kreider, M.E.; Yu, H.; Osmieri, L.; Parimuha, M.R.; Reeves, K.S.; Marin, D.H.; Hannagan, R.T.; Volk, E.K.; Jaramillo, T.F.; Young, J.L.; et al. Understanding the Effects of Anode Catalyst Conductivity and Loading on Catalyst Layer Utilization and Performance for Anion Exchange Membrane Water Electrolysis. ACS Catal. 2024, 14, 10806–10819. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Z.; Qiu, S.; Deng, F. Mechanism in pH Effects of Electrochemical Reactions: A Mini-Review. Carbon Lett. 2024, 34, 1269–1286. [Google Scholar] [CrossRef]
- Ledezma-Yanez, I.; Wallace, W.D.Z.; Sebastian-Pascual, P.; Climent, V.; Feliu, J.M.; Koper, M.T.M. Interfacial Water Reorganization as a pH-Dependent Descriptor of the Hydrogen Evolution Rate on Platinum Electrodes. Nat. Energy 2017, 2, 17031. [Google Scholar] [CrossRef]
- Wei, Y.; Soomro, R.A.; Xie, X.; Xu, B. Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction Based On 2D MXenes. J. Energy Chem. 2021, 55, 244–255. [Google Scholar] [CrossRef]
- Chen, P.; Ye, J.; Wang, H.; Ouyang, L.; Zhu, M. Recent Progress of Transition Metal Carbides/Nitrides for Electrocatalytic Water Splitting. J. Alloys. Compd. 2021, 883, 160833. [Google Scholar] [CrossRef]
- Tian, D.; Denny, S.R.; Li, K.; Wang, H.; Kattel, S.; Chen, J.G. Density Functional Theory Studies of Transition Metal Carbides and Nitrides as Electrocatalysts. Chem. Soc. Rev. 2021, 50, 12338–12376. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, D.; Wang, G.; Ma, P.; Wang, X.; Wang, J.; Ma, R. Vertical 3D Nanostructures Boost Efficient Hydrogen Production Coupled with Glycerol Oxidation Under Alkaline Conditions. Nano-Micro Lett. 2023, 15, 189. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, X.; Xu, Y.; Song, H.; Min, X.; Tang, Z.; Pi, C.; Li, J.; Gao, B.; Zheng, Y.; et al. Heterojunction Mo-Based Binary and Ternary Nitride Catalysts with Pt-Like Activity for the Hydrogen Evolution Reaction. Chem. Eng. J. 2023, 470, 144370. [Google Scholar] [CrossRef]
- Ding, X.; Jiang, R.; Wu, J.; Xing, M.; Qiao, Z.; Zeng, X.; Wang, S.; Cao, D. Ni3N-CeO2 Heterostructure Bifunctional Catalysts for Electrochemical Water Splitting. Adv. Funct. Mater. 2023, 33, 2306786. [Google Scholar] [CrossRef]
- Feng, S.; Li, D.; Dong, H.; Xie, S.; Miao, Y.; Zhang, X.; Gao, B.; Chu, P.K.; Peng, X. Tailoring the Mo-N/Mo-O Configuration in MoO2/Mo2N Heterostructure for Ampere-Level Current Density Hydrogen Production. Appl. Catal. B-Environ. Energy 2024, 342, 123451. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Huebner, R.; Kresse, J.; Zhang, X.; Deconinick, M.; Vaynzof, Y.; Weidinger, I.M.; Eychmueller, A. Cobalt-based Co3Mo3N/Co4N/Co Metallic Heterostructure as a Highly Active Electrocatalyst for Alkaline Overall Water Splitting. Angew. Chem. Int. Edit. 2024, 63, e202319239. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Huang, Z.; Zhang, Q.; Isimjan, T.T.; Chu, Y.; Mu, Y.; Wu, B.; Huang, Z.; Yang, X.; Zeng, L. Interfacial Engineering of Co5.47N/Mo5N6 Nanosheets with Rich Active Sites Synergistically Accelerates Water Dissociation Kinetics for Pt-Like Hydrogen Evolution. J. Colloid Interface Sci. 2023, 643, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Luo, L.; He, Y.; Mushtaq, M.; Li, J.; Yang, H.; Khanam, Z.; Qu, J.; Wang, Z.; Balogun, M.S. High-Performance Alkaline Freshwater and Seawater Hydrogen Catalysis by Sword-Head Structured Mo2N-Ni3Mo3N Tunable Interstitial Compound Electrocatalysts. Adv. Funct. Mater. 2024, 34, 2306061. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, P.; Guo, S.; Xin, X.; Wang, Y.; Huang, W.; Wang, M.; Yang, B.; Sobrido, A.J.; Ghasemi, J.B.; et al. Gradient Heating Epitaxial Growth Gives Well Lattice-Matched Mo2C-Mo2N Heterointerfaces that Boost Both Electrocatalytic Hydrogen Evolution and Water Vapor Splitting. Angew. Chem. Int. Edit. 2022, 61, e202209703. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liang, J.; Song, D.; Li, X.; Li, H. Modulation of Charge Redistribution in Heterogeneous NiO-Ni3Se4 Nanosheet Arrays for Advanced Water Electrolysis. Adv. Funct. Mater. 2024, 34, 2308345. [Google Scholar] [CrossRef]
- Yang, B.; Wei, C.G.; Wang, X.H.; Fu, H.C.; Chen, X.H.; Zhang, Q.; Luo, Y.H.; Luo, H.Q.; Li, N.B. Optimization of Hydrogen Adsorption on W2C by Late Transition Metal Doping for Efficient Hydrogen Evolution Catalysis. Mater. Today Nano 2023, 23, 100350. [Google Scholar] [CrossRef]
- Zheng, Y.; Mou, Y.; Wang, Y.; Wan, J.; Yao, G.; Feng, C.; Sun, Y.; Dai, L.; Zhang, H.; Wang, Y. Aluminum-Incorporation Activates Vanadium Carbide with Electron-Rich Carbon Sites for Efficient pH-Universal Hydrogen Evolution Reaction. J. Colloid Interface Sci. 2024, 656, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhou, S.; Wang, Z.; Zhao, J.; Qiu, J. Boosting Electrocatalytic Oxygen Evolution by Synergistically Coupling Layered Double Hydroxide with MXene. Nano Energy 2018, 44, 181–190. [Google Scholar] [CrossRef]
- Yan, L.; Song, D.; Liang, J.; Li, X.; Li, H.; Liu, Q. Fabrication of Highly Efficient Rh-Doped Cobalt-Nickel-Layered Double Hydroxide/MXene-Based Electrocatalyst with Rich Oxygen Vacancies for Hydrogen Evolution. J. Colloid Interface Sci. 2023, 640, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, W.-P.; Cao, Y.; Portniagin, A.; Tang, B.; Wang, S.; Liu, Q.; Yu, D.Y.W.; Zhong, X.; Zheng, X.; et al. Dual-Atom Co/Ni Electrocatalyst Anchored at the Surface-Modified Ti3C2Tx MXene Enables Efficient Hydrogen and Oxygen Evolution Reactions. Acs Nano 2024, 18, 4256–4268. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xie, W.; Song, Y.; Li, H.; Li, S.; Jiang, S.; Lee, J.Y.; Shao, M. Bifunctional Integrated Electrode for High-Efficient Hydrogen Production Coupled with 5-Hydroxymethylfurfural Oxidation. Appl. Catal. B-Environ. Energy 2022, 312, 121400. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Chen, J.; Zhao, S.; Xi, M.; Yang, L.; Long, Y.; Ni, Z.; Zhou, Y.; Chen, A. Interfacial Electronic Engineering of Heterostructured Co2P-MoNiP/NF Nano-Sea-Urchin Catalysts for Efficient and Stable Hydrogen Evolution via Water/Seawater Splitting. Chem. Eng. J. 2023, 477, 147092. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, C.; Yan, R.; Zou, X.; Hu, F.-L.; Mi, Y.; Yan, C.; Zhao, S. Constructing Built-in Electric Field in Heterogeneous Nanowire Arrays for Efficient Overall Water Electrolysis. Angew. Chem. Int. Edit. 2023, 62, e202302795. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Mo, Y.; Yu, F.; Liao, L.; Yong, X.; Zhang, F.; Li, D.; Zhou, Q.; Sheng, T.; Zhou, H. Engineering Active Iron Sites on Nanoporous Bimetal Phosphide/Nitride Heterostructure Array Enabling Robust Overall Water Splitting. Adv. Funct. Mater. 2023, 33, 2209465. [Google Scholar] [CrossRef]
- Shen, S.; Wang, Z.; Lin, Z.; Song, K.; Zhang, Q.; Meng, F.; Gu, L.; Zhong, W. Crystalline-Amorphous Interfaces Coupling of CoSe2/CoP with Optimized d-Band Center and Boosted Electrocatalytic Hydrogen Evolution. Adv. Mater. 2022, 34, 2110631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Z.; Zhang, Z.; Zhang, H.-B.; Mei, Y.; Zhang, F.; Hou, P.-X.; Liu, C.; Cheng, H.-M.; Li, J.-C. Prussian-Blue-Analogue-Derived Ultrathin Co2P-Fe2P Nanosheets for Universal-pH Overall Water Splitting. Nano Lett. 2023, 23, 8331–8338. [Google Scholar] [CrossRef] [PubMed]
- Salem, K.E.; Saleh, A.A.; Khedr, G.E.; Shaheen, B.S.; Allam, N.K. Unveiling the Optimal Interfacial Synergy of Plasma-Modulated Trimetallic Mn-Ni-Co Phosphides: Tailoring Deposition Ratio for Complementary Water Splitting. Energy Environ. Mater. 2023, 6, 12324. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Huang, X.; Zhu, Y.; Wang, D. Bimetallic Phosphide Heterostructure Coupled with Ultrathin Carbon Layer Boosting Overall Alkaline Water and Seawater Splitting. Small 2023, 19, 2206533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, C.; Hu, J.; Peng, D.; Huang, K.; Wu, J.; Chen, Z.; Huang, Y. Cobalt Tungsten Phosphide with Tunable W-Doping as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Nano Res. 2021, 14, 4073–4078. [Google Scholar] [CrossRef]
- Jiang, H.; Yan, L.; Zhang, S.; Zhao, Y.; Yang, X.; Wang, Y.; Shen, J.; Zhao, X.; Wang, L. Electrochemical Surface Restructuring of Phosphorus-Doped Carbon@MoP Electrocatalysts for Hydrogen Evolution. Nano-Micro Lett. 2021, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, Z.-F.; Guan, T.; Zhang, G.; Zhang, J.; Han, J.; Guan, S.; Wang, N.; Wang, J.; Li, K. Optimizing Band Structure of CoP Nanoparticles via Rich-Defect Carbon Shell toward Bifunctional Electrocatalysts for Overall Water Splitting. Carbon Energy 2023, 5, e268. [Google Scholar] [CrossRef]
- Shi, M.; Sultana, F.; Qin, X.; Zhang, P.; Qian, K.; Wei, T.; Duan, Y.; Li, T.; Bai, J.; Li, R. In Situ Evolution of MOF-Derived C@NiCoP/NF Promotes Urea-Assisted Electrocatalytic Hydrogen Production. Appl. Catal. B-Environ. Energy 2025, 371, 125210. [Google Scholar] [CrossRef]
- Chen, B.; Hu, P.; Yang, F.; Hua, X.; Yang, F.F.; Zhu, F.; Sun, R.; Hao, K.; Wang, K.; Yin, Z. In Situ Porousized MoS2 Nano Islands Enhance HER/OER Bifunctional Electrocatalysis. Small 2023, 19, 2207177. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, J.; Guo, S.; Liu, J.; Zeng, J.; Yuan, F. Polyacrylonitrile-Based 3D N-Rich Activated Porous Carbon Synergized with Co-Doped MoS2 for Promoted Electrocatalytic Hydrogen Evolution. Sep. Purif. Technol. 2025, 354, 129011. [Google Scholar] [CrossRef]
- Xu, J.; Xue, X.-X.; Shao, G.; Jing, C.; Dai, S.; He, K.; Jia, P.; Wang, S.; Yuan, Y.; Luo, J.; et al. Atomic-Level Polarization in Electric Fields of Defects for Electrocatalysis. Nat. Commun. 2023, 14, 7849. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shao, G.; Tang, X.; Lv, F.; Xiang, H.; Jing, C.; Liu, S.; Dai, S.; Li, Y.; Luo, J.; et al. Frenkel-Defected Monolayer MoS2 Catalysts for Efficient Hydrogen Evolution. Nat. Commun. 2022, 13, 2193. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Z.; Jiang, H.; Wang, X.; Xia, P.; Duan, Z.; Ren, Y.; Xiang, H.; Li, H.; Zeng, J.; et al. Enhanced HER Efficiency of Monolayer MoS2 via S Vacancies and Nano-Cones Array Induced Strain Engineering. Small 2024, 20, 2307293. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, C.; Zhang, Y.; Wang, L.; Fan, X.; Zou, L.; Cai, Z.; Jiang, J.; Zhou, S.; Zhang, B.; et al. Controllable Thermochemical Generation of Active Defects in the Horizontal/Vertical MoS2 for Enhanced Hydrogen Evolution. Adv. Funct. Mater. 2023, 33, 2304302. [Google Scholar] [CrossRef]
- Xie, Z.; Yu, S.; Ma, X.; Li, K.; Ding, L.; Wang, W.; Cullen, D.A.; Meyer, H.M., III; Yu, H.; Tong, J.; et al. MoS2 Nanosheet Integrated Electrodes with Engineered 1T-2H Phases and Defects for Efficient Hydrogen Production in Practical PEM Electrolysis. Appl. Catal. B-Environ. Energy 2022, 313, 121458. [Google Scholar] [CrossRef]
- Gu, C.; Sun, T.; Wang, Z.; Jiang, S.; Wang, Z. High Resolution Electrochemical Imaging for Sulfur Vacancies on 2D Molybdenum Disulfide. Small Methods 2023, 7, 2201529. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Song, E.; Zhao, W.; Xu, S.; Zhao, W.; Lei, Y.; Fang, Y.; Liu, J.; Huang, F. Charge Self-Regulation in 1T′′′-MoS2 Structure with Rich S Vacancies for Enhanced Hydrogen Evolution Activity. Nat. Commun. 2022, 13, 5954. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, J.; Sun, Y.; Wu, C.; Geng, G.; Zhang, J.; Wu, E.; Xu, L.; Wu, S.; Hu, X.; et al. Engineering of Oxidized Line Defects on CVD-Grown MoS2 Flakes. ACS Appl. Mater. Interfaces 2022, 14, 47288–47299. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yan, F.; Zhao, Y.; Geng, B.; Ma, X.; Wu, L.; Zhang, X.; Chen, Y. A Heterostructure of Interlayer-Expanded 1T Phase MoS2 and Spherical MoO2 for Efficient and Stable Hydrogen Evolution. Appl. Catal. B-Environ. Energy 2024, 343, 123534. [Google Scholar] [CrossRef]
- Liu, H.-J.; Zhang, S.; Chai, Y.-M.; Dong, B. Ligand Modulation of Active Sites to Promote Cobalt-Doped 1T-MoS2 Electrocatalytic Hydrogen Evolution in Alkaline Media. Angew. Chem. Int. Edit. 2023, 62, e202313845. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yu, K.; Xu, S.; Yuan, S.; Xiang, L.; Pang, B.; Zheng, J.; Li, N. Synergizing Lattice Strain and Electron Transfer in TMSs@ 1T-MoS2 In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. Appl. Catal. B-Environ. Energy 2023, 328, 122445. [Google Scholar] [CrossRef]
- Liu, F.; Cai, X.; Tang, Y.; Liu, W.; Chen, Q.; Dong, P.; Xu, M.; Tan, Y.; Bao, S. Nano-Ni-Induced Electronic Modulation of MoS2 Nanosheets Enables Energy-Saving H2 Production and Sulfide Degradation. Energy Environ. Mater. 2024, 7, e12644. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, X.; Shao, G.; Xiang, H.; Li, Z.; Jin, Y.; Chen, Y.; Jiang, H.; Li, H.; Shui, J.; et al. Activating the Electrocatalysis of MoS2 Basal Plane for Hydrogen Evolution via Atomic Defect Configurations. Small 2022, 18, 2200601. [Google Scholar] [CrossRef] [PubMed]
- Mravik, J.R.; Milanovic, I.; Govedarovic, S.M.; Mrakovic, A.; Korneeva, E.; Simatovic, I.S.; Kurko, S. Improvement of MoS2 Electrocatalytic Activity for Hydrogen Evolution Reaction by Ion Irradiation. Int. J. Hydrogen. Energy 2023, 48, 38676–38685. [Google Scholar] [CrossRef]
- Hu, M.; Qian, Y.; Yu, S.; Yang, Q.; Wang, Z.; Huang, Y.; Li, L. Amorphous MoS2 Decorated Ni3S2 with a Core-shell Structure of Urchin-Like on Nickel-Foam Efficient Hydrogen Evolution in Acidic and Alkaline Media. Small 2024, 20, 2305948. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, X.; Hu, Y.; Zhang, Z.; Liu, H.; Yin, J.; Xi, P. Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction. Nano-Micro Lett. 2024, 16, 63. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, J.; Wang, C.; Sun, Y.; Liu, P.; Du, X.; Pan, H.; Li, H.; Liang, H.; Guo, J.; et al. Enriched Edge Sites of Ultrathin Ni3S2/NiO Nanomeshes Promote Surface Reconstruction for Robust Electrochemical Water Splitting. Nano Energy 2024, 129, 110020. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Xing, P.; Li, X.; Du, Q.; Fan, X.; Cai, Z.; Yin, R.; Yao, Y.; Gan, W. Self-Encapsulation of High-Entropy Alloy Nanoparticles inside Carbonized Wood for Highly Durable Electrocatalysis. Adv. Mater. 2024, 36, 2402391. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Song, C.; Li, X.; Jia, Q.; Wu, P.; Lou, Z.; Ma, Y.; Cui, X.; Zhou, X.; Jiang, L. Defect-Rich FeCoNiMnRu High-Entropy Alloys with Activated Interfacial Water for Boosting Alkaline Water/Seawater Hydrogen Evolution. Chem. Eng. J. 2025, 509, 161070. [Google Scholar] [CrossRef]
- Li, K.; Qiao, W.; Li, N.; Lu, M.; Gu, C.; Gu, L.; Bai, Y.; Song, L.; Li, L. Ultrafast Microwave Construction of Stabilized RuCo Alloys for Overall Water Splitting. J. Chem. Phys. 2025, 162, 244702. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Wang, J.; Guo, L.; Li, H.; Xiao, W.; Xu, G.; Chen, D.; Li, C.; Du, Y.; Ding, H.; et al. Microwave-Assisted PtRu Alloying on Defective Tungsten Oxide: A Pathway to Improved Hydroxyl Dynamics for Highly-Efficient Hydrogen Evolution Reaction. Adv. Energy Mater. 2024, 14, 2402372. [Google Scholar] [CrossRef]
- Dong, K.; Tran, D.T.; Li, X.; Prabhakaran, S.; Kim, D.H.; Kim, N.H.; Lee, J.H. Three-Phase Interface Engineering via P-Doped CoMo2S4-Integrated Co4S3/Co2P Enables High-Efficiency Overall Water Splitting. Appl. Catal. B-Environ. Energy 2024, 344, 123649. [Google Scholar] [CrossRef]
- Ding, X.; Liu, D.; Zhao, P.; Chen, X.; Wang, H.; Oropeza, F.E.; Gorni, G.; Barawi, M.; Garcia-Tecedor, M.; O’Shea, V.A.d.l.P.; et al. Dynamic Restructuring of Nickel Sulfides for Electrocatalytic Hydrogen Evolution Reaction. Nat. Commun. 2024, 15, 5336. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Li, J.; Chen, A.; Yu, J.; Gao, A.; Zuo, C.; Liu, W.; An, X.; Hu, G. Recent Advances and Prospectives in Tellurium-Based Electrocatalysts for Water Splitting. ACS Appl. Energ. Mater. 2025, 8, 7805–7837. [Google Scholar] [CrossRef]
- Gao, Q.; Huang, C.-Q.; Ju, Y.-M.; Gao, M.-R.; Liu, J.-W.; An, D.; Cui, C.-H.; Zheng, Y.-R.; Li, W.-X.; Yu, S.-H. Phase-Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts. Angew. Chem. Int. Edit. 2017, 56, 7769–7773. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Yao, H.; Wang, Y.; Wang, C.; Zhang, S.; Guo, S.; Li, Y.; Ma, S. Interface Effect of Fe Doped NiSe/Ni3Se2 Heterojunction as Highly Efficient Electrocatalysts for Overall Water Splitting. Chem. Eng. J. 2024, 488, 150996. [Google Scholar] [CrossRef]
- Karthikeyan, S.C.; Prabhakaran, S.; Kumar, R.S.; Ramakrishnan, S.; Kim, A.R.; Kim, D.H.; Yoo, D.J. High-Efficiency Sustainable Energy Driven Alkaline/Seawater Electrolysis Using a Novel Hetero-Structured Non-Noble Bimetal Telluride Nanorods. Mater. Today Nano 2023, 24, 100412. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Xu, H.; Guan, D.; Hu, Z.; Jing, C.; Sha, Y.; Gu, Y.; Huang, Y.-C.; Chang, Y.-C.; et al. Combined Corner-Sharing and Edge-Sharing Networks in Hybrid Nanocomposite with Unusual Lattice-Oxygen Activation for Efficient Water Oxidation. Adv. Funct. Mater. 2022, 32, 2207618. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Liu, X.; Cao, Y.; Huang, J.; Li, Y.; Liu, F. From Hexagonal to Monoclinic: Engineering Crystalline Phase to Boost the Intrinsic Catalytic Activity of Tungsten Oxides for the Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2021, 9, 5642–5650. [Google Scholar] [CrossRef]
- Liu, J.; Tang, C.; Ke, Z.; Chen, R.; Wang, H.; Li, W.; Jiang, C.; He, D.; Wang, G.; Xiao, X. Optimizing Hydrogen Adsorption by d-d Orbital Modulation for Efficient Hydrogen Evolution Catalysis. Adv. Energy Mater. 2022, 12, 2103301. [Google Scholar] [CrossRef]
- Chen, Z.; Gong, W.; Wang, J.; Hou, S.; Yang, G.; Zhu, C.; Fan, X.; Li, Y.; Gao, R.; Cui, Y. Metallic W/WO2 Solid-Acid Catalyst Boosts Hydrogen Evolution Reaction in Alkaline Electrolyte. Nat. Commun. 2023, 14, 5363. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Xu, L.; Zuo, S.; Song, L.; Zou, C.; Garcia-Melchor, M.; Li, Y.; Ren, Y.; Rueping, M.; Zhang, H. Manipulation of Oxidation States on Phase Boundary via Surface Layer Modification for Enhanced Alkaline Hydrogen Electrocatalysis. Adv. Mater. 2024, 36, 2405128. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhao, Y.; Liang, H.; Song, X.; Yu, B.; Liu, F.; Ragauskas, A.J.; Wang, C. Novel Waste-Derived Non-Noble Metal Catalysts to Accelerate Acidic and Alkaline Hydrogen Evolution Reaction. Chem. Eng. J. 2023, 466, 143140. [Google Scholar] [CrossRef]
- Ma, G.; Gao, S.; Tang, G.; Chen, F.; Lang, X.; Qiu, X.; Song, X. Development of Starch-Based Amorphous CoOx Self-Supporting Carbon Aerogel Electrocatalyst for Hydrogen Evolution. Carbohydr. Polym. 2023, 314, 120942. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pan, Y.; Zhong, Y.; Ge, L.; Jiang, S.P.; Shao, Z. From Scheelite BaMoO4 to Perovskite BaMoO3: Enhanced Electrocatalysis toward the Hydrogen Evolution in Alkaline Media. Compos. Pt. B-Eng. 2020, 198, 108214. [Google Scholar] [CrossRef]
- Azhar, M.R.; Arafat, Y.; Khiadani, M.; Wang, S.; Shao, Z. Water-Stable MOFs-Based Core-Shell Nanostructures for Advanced Oxidation towards Environmental Remediation. Compos. Pt. B-Eng. 2020, 192, 107985. [Google Scholar] [CrossRef]
- Zhong, Y.; Xu, X.; Wang, W.; Shao, Z. Recent Advances in Metal-Organic Framework Derivatives as Oxygen Catalysts for Zinc-Air Batteries. Batteries Supercaps 2019, 2, 272–289. [Google Scholar] [CrossRef]
- Wang, X.; Ge, L.; Lu, Q.; Dai, J.; Guan, D.; Ran, R.; Weng, S.-C.; Hu, Z.; Zhou, W.; Shao, Z. High-Performance Metal-Organic Framework-Perovskite Hybrid as an Important Component of the Air-Electrode for Rechargeable Zn-Air Battery. J. Power Sources 2020, 468, 228377. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, Y.; Ma, T.; Yang, C.; Peng, Y.; Zhou, Z.; Zhou, M.; Li, S.; Wang, Y.; Cheng, C. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Adv. Mater. 2021, 33, 2006042. [Google Scholar] [CrossRef] [PubMed]
- Velayutham, R.; Raj, C.J.; Jang, H.M.; Cho, W.J.; Palanisamy, K.; Kaya, C.; Kim, B.C. Surface-Oriented Heterostructure of Iron Metal Organic Framework Confined Molybdenum Disulfides as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Mater. Today Nano 2023, 24, 100387. [Google Scholar] [CrossRef]
- Shooshtari Gugtapeh, H.; Rezaei, M. One-Step Electrodeposition of a Mesoporous Ni/Co-Imidazole-Based Bimetal-Organic Framework on Pyramid-like NiSb with Abundant Coupling Interfaces as an Ultra-Stable Heterostructural Electrocatalyst for Water Splitting. ACS Appl. Mater. Interfaces 2023, 15, 34682–34697. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Wang, Q.; Peng, C.; Wang, R.; Liu, J.; Tsidaeva, N.; Wang, W. MOF-Derived CoS2/WS2 Electrocatalysts with Sulfurized Interface for High-Efficiency Hydrogen Evolution Reaction: Synthesis, Characterization And DFT Calculations. Chem. Eng. J. 2024, 479, 147924. [Google Scholar] [CrossRef]
- Do, H.H.; Tekalgne, M.A.; Le, Q.V.; Cho, J.H.; Ahn, S.H.; Kim, S.Y. Hollow Ni/NiO/C Composite Derived from Metal-Organic Frameworks as a High-Efficiency Electrocatalyst for the Hydrogen Evolution Reaction. Nano Converg. 2023, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, J.; Zhang, J.; Huang, C.; Zhou, J.-J.; Xu, L.; Wang, L.; Lu, S.; Chen, L. MOF-on-MOF in Situ-Derived Hybrid CoNi@C/N-Doped C Micro-Rods Arrays as an Efficient Catalyst for Hydrogen Evolution Reaction in Alkaline Solution. Appl. Surf. Sci. 2024, 674, 160920. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, L.; Wang, Q.; Wei, G.-F.; Wang, X. Metal-Organic Framework-Derived Highly Active Cobalt-Nitrogen-Carbon Hybrid Arrays for Efficient Hydrogen Evolution Reaction. Adv. Compos. Hybrid Mater. 2023, 6, 157. [Google Scholar] [CrossRef]
- Ghising, R.B.; Pan, U.N.; Kandel, M.R.; Dhakal, P.P.; Prabhakaran, S.; Kim, D.H.; Kim, N.H.; Lee, J.H. Bimetallic-Organic Frameworks Derived Heterointerface Arrangements of V, N Co-Doped Co/Fe-Selenide Nanosheets Electrocatalyst for Efficient Overall Water-Splitting. Mater. Today Nano 2023, 24, 100390. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, A.; Bi, Z.; Wang, X.; Liu, X.; Kong, Q.; Zhang, W.; Mai, L.; Hu, G. MOF-on-MOF-Derived Ultrafine Fe2P-Co2P Heterostructures for High-Efficiency and Durable Anion Exchange Membrane Water Electrolyzers. Acs Nano 2023, 17, 24070–24079. [Google Scholar] [CrossRef] [PubMed]
- Kwon, I.S.; Lee, S.J.; Kim, J.Y.; Kwak, I.H.; Zewdie, G.M.; Yoo, S.J.; Kim, J.-G.; Lee, K.-S.; Park, J.; Kang, H.S. Composition-Tuned (MoWV)Se2 Ternary Alloy Nanosheets as Excellent Hydrogen Evolution Reaction Electrocatalysts. Acs Nano 2023, 17, 2968–2979. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ding, H.; Fan, X.; Xiao, J.; Zhang, L.; Xu, G. Anchoring Cobalt Molybdenum Nickel Alloy Nanoparticles on Molybdenum Dioxide Nanosheets as Efficient and Stable Self-Supported Catalyst for Overall Water Splitting at High Current Density. J. Colloid Interface Sci. 2023, 648, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xin, S.; Xiao, Y.; Zhang, Z.; Li, Z.; Zhang, W.; Li, C.; Bao, R.; Peng, J.; Yi, J.; et al. Manipulating the Water Dissociation Electrocatalytic Sites of Bimetallic Nickel-Based Alloys for Highly Efficient Alkaline Hydrogen Evolution. Angew. Chem. Int. Edit. 2022, 61, e202202518. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Purkayastha, S.K.; Guha, A.K.; Das, M.R.; Deka, S. Designing Nanoarchitecture of NiCu Dealloyed Nanoparticles on Hierarchical Co Nanosheets for Alkaline Overall Water Splitting at Low Cell Voltage. ACS Catal. 2023, 13, 10615–10626. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Nie, Y.; Wang, R.; Zou, J. Electronic-State Modulation of Metallic Co-Assisted Co7Fe3 Alloy Heterostructure for Highly Efficient and Stable Overall Water Splitting. Adv. Sci. 2023, 10, 2301961. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, J.; Yang, N.; Zhao, D.; Yang, B.; Hou, Y.; Xie, G. Ultrafast Joule Heating Method for Synthesizing CoNi Nanoalloy Catalysts for Electrocatalytic Hydrogen Evolution. J. Alloys. Compd. 2025, 1019, 179101. [Google Scholar] [CrossRef]
- Li, W.; Ni, Z.; Akdim, O.; Liu, T.; Zhu, B.; Kuang, P.; Yu, J. Dual Active Site Engineering in Porous NiW Bimetallic Alloys for Enhanced Alkaline Hydrogen Evolution Reaction. Adv. Mater. 2025, 2503742. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-K.; Lu, W.-T.; Du, Y.-X.; Liu, R.; Yue, Y.-T.; Fan, Y.-L.; Zhang, G.; Cao, F.-F. Co3W Intermetallic Compound as an Efficient Hydrogen Evolution Electrocatalyst for Water Splitting and Electrocoagulation in Non-Acidic Media. Chem. Eng. J. 2022, 438, 135517. [Google Scholar] [CrossRef]
- Liu, X.; Lu, H.; Zhu, S.; Cui, Z.; Li, Z.; Wu, S.; Xu, W.; Liang, Y.; Long, G.; Jiang, H. Alloying-Triggered Phase Engineering of NiFe System via Laser-Assisted Al Incorporation for Full Water Splitting. Angew. Chem. Int. Edit. 2023, 62, e202300800. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Xu, C.; Hou, J.; Ma, W.; Jian, T.; Yan, S.; Liu, H. Duplex Interpenetrating-Phase FeNiZn and FeNi3 Heterostructure with Low-Gibbs Free Energy Interface Coupling for Highly Efficient Overall Water Splitting. Nano-Micro Lett. 2023, 15, 95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lian, K.; Liu, Q.; Qi, G.; Zhang, S.; Luo, J.; Liu, X. High Entropy Alloy Nanoparticles as Efficient Catalysts for Alkaline Overall Seawater Splitting and Zn-Air Batteries. J. Colloid Interface Sci. 2023, 646, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R.G.; Krishnan, S.; Singh, M.K.; Rai, D.K.; Samal, S. A Detailed Investigation Regarding the Corrosion and Electrocatalytic Performance of Fe-Co-Ni-Cr-V High Entropy Alloy. Electrochim. Acta 2023, 460, 142582. [Google Scholar] [CrossRef]
- Ye, H.; Su, J.; Yang, G.; Zhou, L.; Xie, Y.; Zhan, X.; Tian, J.; Tong, X. Boosting HER Activity of FeCoNiMnZn High-Entropy Alloys Supported on Nitrogen-Doped Carbon Nanotubes. Mater. Today Commun. 2025, 45, 112365. [Google Scholar] [CrossRef]
- Zou, J.; Tang, L.; He, W.; Zhang, X. High-Entropy Oxides: Pioneering the Future of Multifunctional Materials. Acs Nano 2024, 18, 34492–34530. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, J.-X.; Tu, T.-Z.; Wang, W.; Zhang, G.-J. High-Entropy Oxides for Catalysis: A Diamond in the Rough. Chem. Eng. J. 2023, 451, 138659. [Google Scholar] [CrossRef]
- Kang, N.; Ma, H.; Chu, M.; Jiang, X.; Liu, Z.; Feng, X.; Ren, X.; Liu, X.; Xie, G. Electrochemical Performance of In-Situ Electrodeposited Spinel-Structured High Entropy Oxides/NiFeCuMoMn-High Entropy Alloy Multiphase Electrocatalysts for Seawater Electrolysis. Electrochim. Acta 2024, 506, 144931. [Google Scholar] [CrossRef]
- Liu, X.; Tian, S.; Wei, S.; Xue, W.; Wang, Y.; Liu, G.; Li, J. Bidirectional Optimization of Strong-Weak Adsorption Pairs in Amorphous-Crystalline Heterostructure via Built-In Electric Field towards Efficient Hydrogen Evolution Reaction. Chem. Eng. J. 2025, 507, 160752. [Google Scholar] [CrossRef]
- Teng, X.; Wang, Z.; Wu, Y.; Zhang, Y.; Yuan, B.; Xu, Y.; Wang, R.; Shan, A. Enhanced Alkaline Hydrogen Evolution Reaction of MoO2/Ni3S2 Nanorod Arrays by Interface Engineering. Nano Energy 2024, 122, 109299. [Google Scholar] [CrossRef]
- Ali, S.A.; Majumdar, S.; Chowdhury, P.K.; Alshehri, S.M.; Ahmad, T. Ultrafast Charge Transfer Dynamics in Multifaceted Quaternary Te-MoTe2-MoS2/ZnO S-Scheme Heterostructured Nanocatalysts for Efficient Green Hydrogen Energy. ACS Appl. Energ. Mater. 2024, 7, 7325–7337. [Google Scholar] [CrossRef]
- Ge, S.; Shen, X.; Gao, J.; Ma, K.; Zhao, H.; Fu, R.; Feng, C.; Zhao, Y.; Jiao, Q.; Li, H. Synergy of Mo Doping and Heterostructures in FeCo2S4@Mo-NiCo LDH/NF as Durable and Corrosion-Resistance Bifunctional Electrocatalyst towards Seawater Electrolysis at Industrial Current Density. Chem. Eng. J. 2024, 485, 150161. [Google Scholar] [CrossRef]
- Han, S.; Yao, H.; Zhan, J.; Wang, C.; Zhang, S.; Gu, Q.; Li, C.; Zhang, S.; Dong, H.; Ma, S. One-Pot Synthesis of Hierarchical Assembly of NiMoO4/MoS2/Ni3S2 on Nickel Foam for Highly Efficient and Durable Electrocatalytic Hydrogen Evolution Reaction in a Wide pH Range. Chem. Eng. J. 2025, 509, 161095. [Google Scholar] [CrossRef]
- Wang, X.; Huang, H.; Qian, J.; Li, Y.; Shen, K. Intensified Kirkendall Effect Assisted Construction of Double-Shell Hollow Cu-Doped CoP Nanoparticles Anchored by Carbon Arrays for Water Splitting. Appl. Catal. B-Environ. Energy 2022, 325, 122295. [Google Scholar] [CrossRef]
- Chen, H.; Hu, M.; Wang, X.; Xu, X.; Jing, P.; Liu, B.; Gao, R.; Zhang, J. Constructing Novel Ternary Heterostructure of CeP5O14/WP/WS2 to Enhance Catalytic Activity for Hydrogen Evolution in a Full pH Range. Small Struct. 2023, 4, 2300026. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Li, X.; Hu, Q.; Deng, C.; Jiang, X.; Yang, H.; He, C. Janus Heterostructure of Cobalt and Iron Oxide as Dual-Functional Electrocatalysts for Overall Water Splitting. Nano Res. 2023, 16, 2245–2251. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, Z.; Gao, W.; Yin, H. NiFeCo-Based High Entropy Alloys Nanoparticles Coated with N-Doped Graphene Layers as Hydrogen Evolution Catalyst in Alkaline Solution. Chem. Eng. J. 2024, 489, 151370. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, J.; Zhou, H.; Xing, L.; Qiao, S.; Yuan, J.; Mei, B.; Wei, Z.; Zhao, S.; Tang, Y.; et al. Coordination Shell Dependent Activity of CuCo Diatomic Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reaction. Adv. Funct. Mater. 2024, 34, 2311664. [Google Scholar] [CrossRef]
- Quilez-Bermejo, J.; Garcia-Dali, S.; Daouli, A.; Zitolo, A.; Canevesi, R.L.S.; Emo, M.; Izquierdo, M.T.; Badawi, M.; Celzard, A.; Fierro, V. Advanced Design of Metal Nanoclusters and Single Atoms Embedded in C1N1-Derived Carbon Materials for ORR, HER, and OER. Adv. Funct. Mater. 2023, 33, 2300405. [Google Scholar] [CrossRef]
- Cha, D.C.; Singh, T.I.; Maibam, A.; Kim, T.H.; Nam, D.H.; Babarao, R.; Lee, S. Metal-Organic Framework-Derived Mesoporous B-Doped CoO/Co@N-Doped Carbon Hybrid 3D Heterostructured Interfaces with Modulated Cobalt Oxidation States for Alkaline Water Splitting. Small 2023, 19, 2301405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yan, H.; Liu, Y.; Wang, D.; Jiao, Y.; Wu, A.; Wang, X.; Wang, R.; Tian, C. Multi-Interfacial Engineering of an Interlinked Ni2P-MoP Heterojunction to Modulate the Electronic Structure for Efficient Overall Water Splitting. J. Mater. Chem. A 2023, 11, 15033–15043. [Google Scholar] [CrossRef]
- Li, D.; Cheng, H.; Hao, X.; Yu, G.; Qiu, C.; Xiao, Y.; Huang, H.; Lu, Y.; Zhang, B. Wood-Derived Freestanding Carbon-Based Electrode with Hierarchical Structure for Industrial-Level Hydrogen Production. Adv. Mater. 2024, 36, 2304917. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fei, Z.; Shen, D.; Cheng, C.; Dyson, P.J. Ginkgo Leaf-Derived Carbon Supports for the Immobilization of Iron/Iron Phosphide Nanospheres for Electrocatalytic Hydrogen Evolution. Small 2024, 20, 2309830. [Google Scholar] [CrossRef] [PubMed]
- Zhu, E.; Hu, W.; Dong, J.; Chen, J.; Li, Y.; Wang, L. Advanced Development of In Situ Characterization Technique for Electrocatalytic Hydrogen Evolution Reaction. Adv. Sustain. Syst. 2024, 8, 2400224. [Google Scholar] [CrossRef]
- Cao, D.; Gao, P.; Shen, Y.; Qiao, L.; Ma, M.; Guo, X.; Cheng, D. Fabricating Lattice-Confined Pt Single Atoms with High Electron-Deficient State for Alkali Hydrogen Evolution Under Industrial-Current Density. Adv. Mater. 2025, 37, 2414138. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.; Long, C.; Zhang, Y.; Zhang, M.; Chang, J.; Wang, Y.-L.; Zhang, H.; Liu, R.; Garakani, S.S.; Neli, O.U.; et al. In Situ Time-Resolved X-ray Absorption Spectroscopy Unveils Partial Re-Oxidation of Tellurium Cluster for Prolonged Lifespan in Hydrogen Evolution. J. Am. Chem. Soc. 2025, 147, 14359–14368. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yu, M.; Lee, J.-K.; Qiu, M.; Yuan, D.; Hu, Z.; Zhu, C.; Wu, Y.; Shi, Z.; Ma, W.; et al. Separating Nanobubble Nucleation for Transfer-Resistance-Free Electrocatalysis. Nat. Commun. 2025, 16, 919. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Huang, X.; Su, C.; Song, E.-H.; Liu, B.-X.; Xiao, B.-B. 2D Transition Metal Chalcogenides (TMDs) for Electrocatalytic Hydrogen Evolution Reaction: A Review. Chemphyschem 2024, 25, e202400640. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, P.; Li, L.; Moon, M.-W.; Chung, C.-H.; Li, H.; Lee, J.Y.; Yoo, P.J. Challenges and Emerging Trends in Hydrogen Energy Industrialization: From Hydrogen Evolution Reaction to Storage, Transportation, and Utilization. Small 2025, 21, 2502000. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhen, F.; Qian, X.; Yang, J.; Yu, H.; Wang, Q.; Zhang, L.; Wang, Y.; Qu, B. Study of Efficient Catalytic Electrode for Hydrogen Evolution Reaction from Seawater Based on Low Tortuosity Corn Straw Cellulose Biochar/Mo2C with Porous Channels. Int. J. Biol. Macromol. 2024, 254, 127993. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yan, Z.; Gao, J.; Fan, H.; Li, M.; Wang, E. Ion Sieving Membrane for Direct Seawater Anti-Precipitation Hydrogen Evolution Reaction Electrode. Chem. Sci. 2023, 14, 11830–11839. [Google Scholar] [CrossRef] [PubMed]
Catalysts | Electrolyte | Current Density [mA cm−2] | Overpotential [mV] | Tafel Slope [mV dec−1] | Stability [h] | Refs. |
---|---|---|---|---|---|---|
Ni3N-CeO2/NF | 1 M KOH | 10 | 30 | 42.79 | 35 | [36] |
NiO-Ni3Se4/MXene | 1 M KOH | 10 | 50 | 42.9 | 50 | [42] |
Co2P-MoNiP/NF | 1 M KOH | 10 | 46 | 49.3 | 100 | [49] |
NiOx NTAs/CoP NSs | 1 M KOH | 10 | 51 | 56 | 50 | [21] |
Mn1-Ni1-Co1-P/NF | 1 M KOH | 10 | 14 | 58 | 50 | [54] |
A-MoP@PC | 0.5 M H2SO4 | 10 | 68 | 41 | 40 | [57] |
CoP/DCS | 1 M KOH | 10 | 88 | 56 | 24 | [58] |
C@NiCoP/NF | 1 M KOH | 10 | 91 | 75.25 | 36 | [59] |
MoS2 nano island | 0.5 M H2SO4 | 40 | 320 | 84 | 10 | [60] |
Co-MoS2@CN | 0.5 M H2SO4 | 10 | 137 | 46.5 | 24 | [61] |
S2Mo-MoS2 | 0.5 M H2SO4 | 10 | 169 | 56 | — | [62] |
defect-rich 1T-2H MoS2/CFP | 0.5 M H2SO4 | 10 | 192 | 44 | 38 | [66] |
SV-2H-MoS2 | 0.5 M H2SO4 | 10 | 369 | 78.4 | — | [67] |
Co-1T-MoS2-bpe | 1 M KOH | 10 | 118 | 83 | 50 | [71] |
V-MoS2 | 1 M KOH/0.5 m H2SO4 | 10 | 35/54 | 34/59 | — | [74] |
A-MoS2-Ni3S2-NF | 1 M KOH/0.5 m H2SO4 | 10 | 145/95 | 79.9/107 | 12 | [76] |
P-CoMo2S4/Co4S3-Co2P | 1 M KOH | 10 | 54 | 61 | 40 | [83] |
Ni3S2/NiO | 1 M KOH | 10 | 95 | 84 | 25 | [84] |
Ni3S2/NiO nanomeshes | 1 M KOH | 10 | 73 | 127.2 | 50 | [78] |
NiSe/Ni3Se2-Fe-5 | 1 M KOH | 10 | 144 | 77 | 72 | [87] |
CoMnTe2 | 1 M KOH | 10 | 120 | 69 | 25 | [88] |
Ni-WO2/NF | 1 M KOH | 10 | 41 | 47 | 100 | [91] |
Ni4W/WOx | 1 M KOH | 10 | 22 | 32 | 60 | [93] |
Co@NiMoO-Ni/NF | 1 M KOH | 10 | 18 | 27 | 24 | [3] |
P-CoNiO2@NC | 1 M KOH/0.5 m H2SO4 | 10 | 64.6/96.4 | 55/66 | 100 | [94] |
BaMoO3 | 1 M KOH | 10 | 336 | 110 | — | [96] |
CoS2/WS2 | 0.5 M H2SO4 | 10 | 79 | 52 | 50 | [103] |
CoNi@CNC-500 | 1 M KOH | 10 | 83 | 80 | 100 | [105] |
Fe2P-Co2P/NPC | 1 M KOH | 10 | 38 | 46.8 | 1000 | [108] |
Co7Fe3/Co | 1 M KOH | 10 | 68 | 55.8 | 100 | [113] |
Co-Ni@CC | 0.5 M H2SO4 | 10 | 231 | 111.7 | — | [114] |
NiW | 1 M KOH | 500 | 198 | 117 | 200 | [115] |
NiFeAl/NF | 1 M KOH | 10 | 31 | 37 | 100 | [117] |
FeCoNiMnZn/N-CNTs-FH | 1 M KOH | 10 | 184 | 112 | 50 | [121] |
HEOs/NiFeCuMoMn | 1 M KOH | 10 | 50.5 | 70.46 | 50 | [124] |
MoO2/Ni3S2/NF | 1 M KOH | 10 | 70.4 | 85.2 | 24 | [126] |
Cu,Co/NSC1 | 1 M KOH | 10 | 159 | 75.9 | 25 | [134] |
Co@CNx | 0.5 M H2SO4 | 10 | 270 | 126 | — | [135] |
Ni@NCW | 0.5 M H2SO4 | 10 | 158 | 75 | 18 | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, A.; Li, Z.; Ma, Y.; Liao, W.; Zhao, F.; Zhang, X.; Gao, H. Recent Advances in Non-Noble Metal Electrocatalysts for Hydrogen Evolution Reaction in Water Splitting. Nanomaterials 2025, 15, 1106. https://doi.org/10.3390/nano15141106
Dong A, Li Z, Ma Y, Liao W, Zhao F, Zhang X, Gao H. Recent Advances in Non-Noble Metal Electrocatalysts for Hydrogen Evolution Reaction in Water Splitting. Nanomaterials. 2025; 15(14):1106. https://doi.org/10.3390/nano15141106
Chicago/Turabian StyleDong, Aiyi, Zifeng Li, Yinhua Ma, Weimin Liao, Fengjiao Zhao, Xun Zhang, and Honglin Gao. 2025. "Recent Advances in Non-Noble Metal Electrocatalysts for Hydrogen Evolution Reaction in Water Splitting" Nanomaterials 15, no. 14: 1106. https://doi.org/10.3390/nano15141106
APA StyleDong, A., Li, Z., Ma, Y., Liao, W., Zhao, F., Zhang, X., & Gao, H. (2025). Recent Advances in Non-Noble Metal Electrocatalysts for Hydrogen Evolution Reaction in Water Splitting. Nanomaterials, 15(14), 1106. https://doi.org/10.3390/nano15141106